已知F1、F2分別是雙曲線的左、右焦點,P為雙曲線上的一點,若,且的三邊長成等差數(shù)列,則雙曲線的離心率是        .

5   

解析試題分析:設(shè)|PF1|=m,|PF2|=n,不妨設(shè)P在第一象限,則由已知得 ,∴5a2-6ac+c2=0,方程兩邊同除a2得:即e2-6e+5=0,解得e=5或e=1(舍去),故答案為5.
考點:本題考查了雙曲線的性質(zhì)
點評:解題過程中,為了解答過程的簡便,我們把未知|PF1|設(shè)為m,|PF2|設(shè)為n,這時要求離心率e,我們要找出a,c之間的關(guān)系,則至少需要三個方程,由已知中,若∠F1PF2=90°,且△F1PF2的三邊長成等差數(shù)列,我們不難得到兩個方程,此時一定要注意雙曲線的定義,即P點到兩個焦點的距離之差為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知雙曲線的左焦點為,點為雙曲線右支上一點,且與圓相切于點為線段的中點,為坐標原點, 則=       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知橢圓的左右焦點為,直線AB過點且交橢圓于A、B兩點,則△的周長為_____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

橢圓=1上一點P與橢圓的兩個焦點F1、F2的連線互相垂直,則△PF1F2的面積為_____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

若直線與拋物線交于、兩點,則線段的中點坐標是     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

焦點在軸上,漸近線方程為的雙曲線的離心率為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

過拋物線的焦點作直線交拋物線于兩點,若,則直線的傾斜角。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知是拋物線的焦點,上的兩個點,線段AB的中點為,則的面積等于              

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

(1)已知 的圖象為雙曲線,在雙曲線的兩支上分別取點,則線段的最小值為    
(2)已知 的圖象為雙曲線,在此雙曲線的兩支上分別取點,則線段的最小值為   。

查看答案和解析>>

同步練習(xí)冊答案