分析 (1)利用基本不等式求得$\frac{1}{a}+\frac{1}+2\sqrt{ab}$的最小值,再根據(jù)$\frac{1}{a}+\frac{1}+2\sqrt{ab}$的最小值為t,求得t的值.
(2)把要解的不等式等價轉(zhuǎn)化為與之等價的三個不等式組,求出每個不等式組的解集,再取并集,即得所求.
解答 解:(1)∵已知a>0,b>0,且$\frac{1}{a}+\frac{1}+2\sqrt{ab}$≥2$\sqrt{\frac{1}{ab}}$+2$\sqrt{ab}$
≥2$\sqrt{\frac{2}{\sqrt{ab}}•2\sqrt{ab}}$=4,當且僅當a=b=1時,取等號,
故t=4.
(2)∵|2x+1|+|2x-1|<t=4,∴$\left\{\begin{array}{l}{x≤-\frac{1}{2}}\\{-2x-1+1-2x<4}\end{array}\right.$①,
或 $\left\{\begin{array}{l}{-\frac{1}{2}<x<\frac{1}{2}}\\{2x+1+1-2x<4}\end{array}\right.$②,或$\left\{\begin{array}{l}{x≥\frac{1}{2}}\\{2x+1+2x-1<4}\end{array}\right.$③.
解①求得-1<x≤-$\frac{1}{2}$;解②求得-$\frac{1}{2}$<x<$\frac{1}{2}$;解③求得$\frac{1}{2}$≤x<1,
綜上可得,原不等式的解集為(-1,1).
點評 本題主要考查基本不等式的應(yīng)用,絕對值不等式的解法,體現(xiàn)了轉(zhuǎn)化、分類討論的數(shù)學(xué)思想,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 9$\sqrt{3}$ | B. | 9$\sqrt{2}$+$\frac{9\sqrt{3}}{4}$ | C. | 12$\sqrt{2}$ | D. | 12$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 歸納推理 | B. | 合情推理 | C. | 演繹推理 | D. | 類比推理 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com