分析 (1)由圓的直徑所對的圓周角為直角,可得四邊形CEDF為矩形,再由直角三角形射影定理和平行線分線段成比例定理,即可得到S四邊形CEDF=BF•AE;
(2)運用直角三角形的射影定理和圓的切割線定理,可得$\frac{BF}{AE}=\frac{{B{C^3}}}{{A{C^3}}}$.
解答 證明:(1)∵CD為圓的直徑,
∴三角形FCD和三角形ECD分別是以∠CFD和∠CED為直角的直角三角形.
又∠ACB=90°,可得四邊形CEDF為矩形,
S四邊形CEDF=DF•DE.
在直角三角形BDF和直角三角形DAE中,
∠DFC=∠DEA,∠BDF=∠DAE,
即有△BDF∽△DAE,
即為$\frac{BF}{DE}$=$\frac{DF}{AE}$,即DE•DF=BF•AE.
∴S四邊形CEDF=BF•AE.
(2)∵在三角形ABC中,∠ACB=90°
∴AC2=AD•AB,BC2=BD•BA.∴$\frac{BD}{AD}=\frac{{B{C^2}}}{{A{C^2}}}$(1),
又∵BD2=BC•BF,AD2=AC•AE(切割線定理)
∴$\frac{{B{D^2}}}{{A{D^2}}}=\frac{BC•BF}{AC•AE}$,(2)
由(1)與(2)可得$\frac{BC•BF}{AC•AE}=\frac{{B{C^4}}}{{A{C^4}}}$,
∴$\frac{BF}{AE}=\frac{{B{C^3}}}{{A{C^3}}}$.
點評 本題考查圓的切割線定理、直角三角形的射影定理、平行線分線段成比例定理的運用,考查推理和運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (1,+∞) | B. | (-∞,-1) | C. | (-∞,1) | D. | (-1,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com