【題目】已知定義域為R的函數(shù)f(x)=是奇函數(shù).
(1)求a,b的值;
(2)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.
【答案】(1)2,1;(2)
【解析】試題(Ⅰ)利用奇函數(shù)定義,在f(﹣x)=﹣f(x)中的運用特殊值求a,b的值;
(Ⅱ)首先確定函數(shù)f(x)的單調(diào)性,然后結(jié)合奇函數(shù)的性質(zhì)把不等式f(t2﹣2t)+f(2t2﹣k)<0轉(zhuǎn)化為關(guān)于t的一元二次不等式,最后由一元二次不等式知識求出k的取值范圍.
解:(Ⅰ)因為f(x)是奇函數(shù),所以f(0)=0,
即
又由f(1)=﹣f(﹣1)知.
所以a=2,b=1.
經(jīng)檢驗a=2,b=1時,是奇函數(shù).
(Ⅱ)由(Ⅰ)知,
易知f(x)在(﹣∞,+∞)上為減函數(shù).
又因為f(x)是奇函數(shù),
所以f(t2﹣2t)+f(2t2﹣k)<0
等價于f(t2﹣2t)<﹣f(2t2﹣k)=f(k﹣2t2),
因為f(x)為減函數(shù),由上式可得:t2﹣2t>k﹣2t2.
即對一切t∈R有:3t2﹣2t﹣k>0,
從而判別式.
所以k的取值范圍是k<﹣.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下四個結(jié)論:
①函數(shù)是偶函數(shù);
②當(dāng)時,函數(shù)的值域是;
③若扇形的周長為,圓心角為,則該扇形的弧長為6cm;
④已知定義域為的函數(shù),當(dāng)且僅當(dāng)時,成立.
⑤函數(shù)的最小正周期是
則上述結(jié)論中正確的是______(寫出所有正確結(jié)論的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】寫出下列命題的否定:
(1);
(2)所有可以被5整除的整數(shù),末位數(shù)字都是0;
(3);
(4)存在一個四邊形,它的對角線互相垂直.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)且,則“函數(shù)在上是減函數(shù)”是“函數(shù)在上是增函數(shù)”的( )條件.
A. 充分不必要 B. 必要不充分 C. 充要 D. 既不充分也不必要
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)若函數(shù)在時取得極值,求實數(shù)的值;
(Ⅱ)當(dāng)時,求零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐中,已知都是邊長為的等邊三角形,為中點,且平面,為線段上一動點,記.
(1)當(dāng)時,求異面直線與所成角的余弦值;
(2)當(dāng)與平面所成角的正弦值為時,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),若函數(shù)的圖象與軸的交點個數(shù)不少于2個,則實數(shù)的取值范圍為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在九章算術(shù)中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬如圖,已知四棱錐為陽馬,且,底面若E是線段AB上的點含端點,設(shè)SE與AD所成的角為,SE與底面ABCD所成的角為,二面角的平面角為,則
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)經(jīng)過一年的新農(nóng)村建設(shè),農(nóng)村的經(jīng)濟(jì)收入增加了一倍.實現(xiàn)翻番.為更好地了解該地區(qū)農(nóng)村的經(jīng)濟(jì)收入變化情況,統(tǒng)計了該地區(qū)新農(nóng)村建設(shè)前后農(nóng)村的經(jīng)濟(jì)收入構(gòu)成比例.得到如下餅圖:
則下面結(jié)論中不正確的是
A. 新農(nóng)村建設(shè)后,種植收入減少
B. 新農(nóng)村建設(shè)后,其他收入增加了一倍以上
C. 新農(nóng)村建設(shè)后,養(yǎng)殖收入增加了一倍
D. 新農(nóng)村建設(shè)后,養(yǎng)殖收入與第三產(chǎn)業(yè)收入的總和超過了經(jīng)濟(jì)收入的一半
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com