【題目】在九章算術(shù)中,將底面為長(zhǎng)方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬如圖,已知四棱錐為陽馬,且,底面若E是線段AB上的點(diǎn)含端點(diǎn),設(shè)SE與AD所成的角為,SE與底面ABCD所成的角為,二面角的平面角為,則
A. B. C. D.
【答案】A
【解析】
由陽馬定義、異面直線所成角、線面角、二面角的概念,分別求得三個(gè)角的正切函數(shù),根據(jù)正切函數(shù)的性質(zhì),即可得到答案.
由題意,四棱錐為陽馬,且,底面是線段AB上的點(diǎn),
設(shè)SE與AD所成的角為,SE與底面ABCD所成的角為,二面角的平面角為,
當(dāng)點(diǎn)E與A點(diǎn)不重合時(shí),
在上取點(diǎn),分別連接,使得,
則,,,
因?yàn)?/span>,所以,所以,
又由,所以,所以,
所以。
當(dāng)點(diǎn)E與點(diǎn)A重合時(shí),此時(shí),則,
所以
綜上可知.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列命題中:
①若函數(shù)的定義域?yàn)?/span>,則一定是偶函數(shù);
②若是定義域上奇函數(shù),,都有,則的圖像關(guān)于直線對(duì)稱;
③已知,是函數(shù)的定義域內(nèi)的任意兩個(gè)值,且,若,則是定義域減函數(shù);
④已知是定義在上奇函數(shù),且也為奇函數(shù),則是以4為周期的周期函數(shù)。
其中真命題的有_____________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>R的函數(shù)f(x)=是奇函數(shù).
(1)求a,b的值;
(2)若對(duì)任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, , .
(1)若是的充分不必要條件,求實(shí)數(shù)的取值范圍;
(2)若,“”為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】符號(hào)表示不大于x的最大整數(shù),例如:.
(1)解下列兩個(gè)方程;
(2)設(shè)方程: 的解集為A,集合,,求實(shí)數(shù)k的取值范圍;
(3)求方程的實(shí)數(shù)解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列滿足,,,.s
(1)證明:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng);
(2)求數(shù)列的通項(xiàng),并求數(shù)列的前項(xiàng)和;
(3)若,且是單調(diào)遞增數(shù)列,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐的四個(gè)頂點(diǎn)在球的球面上,,是邊長(zhǎng)為正三角形,分別是的中點(diǎn),,則球的體積為_________________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列“若p,則q”形式的命題中,哪些命題中的q是p的必要條件?
(1)若四邊形為平行四邊形,則這個(gè)四邊形的兩組對(duì)角分別相等;
(2)若兩個(gè)三角形相似,則這兩個(gè)三角形的三邊成比例;
(3)若四邊形的對(duì)角線互相垂直,則這個(gè)四邊形是菱形;
(4)若,則;
(5)若,則;
(6)若為無理數(shù),則x,y為無理數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com