若點P到直線x=-1的距離比它到點(2,0)的距離小1,則點P的軌跡方程為
 
考點:軌跡方程
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:把直線x=-1向左平移一個單位變?yōu)閤=-2,此時點P到直線x=-2的距離等于它到點(2,0)的距離,即可得到點P的軌跡方程.
解答: 解:因為點P到直線x=-1的距離比它到點(2,0)的距離小1,
所以點P到直線x=-2的距離等于它到點(2,0)的距離,
因此點P的軌跡為拋物線,方程為y2=8x.
故答案為:y2=8x.
點評:本題考查點P的軌跡方程,考查拋物線的定義,正確運用拋物線的定義是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

n個完全相同的球,放入m個有標(biāo)志的盒子里,不允許空盒,問有
 
種不同的方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求y=-
1
3
x3+2x2-3x+4的切線傾斜角范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M是△ABC的重心,記
BC
=
a
,
CA
=
b
,
AB
=
c
,且
a
+
b
+
c
=
0
,則
AM
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點A(4,0),P是圓x2+y2=1的動點,求線段AP的中點M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-π,g(x)=cosx.
(1)設(shè)h(x)=f(x)-g(x),若x1,x2∈[-
π
2
+2kπ,
π
2
+2kπ](k∈Z),求證:
h(x1)+h(x2)
2
≥h(
x1+x2
2
);
(2)若x1∈[
π
4
,
3
4
π],且f(xn+1)=g(xn),求證:|x1-
π
2
|+|x2-
π
2
|+…+|xn-
π
2
|<
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x2+ax+b)e-x在x=1處取得極值.
(1)求b的值;
(2)討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種報紙,進(jìn)貨商當(dāng)天以每份進(jìn)價1元從報社購進(jìn),以每份售價2元售出.若當(dāng)天賣不完,剩余報紙報社以每份0.5元的價格回收.根據(jù)市場統(tǒng)計,得到這個季節(jié)的日銷售量X(單位:份)的頻率分布直方圖(如圖所示),將頻率視為概率.
(Ⅰ)求頻率分布直方圖中a的值;
(Ⅱ)若進(jìn)貨量為n(單位:份),當(dāng)n≥X時,求利潤Y的表達(dá)式;
(Ⅲ)若當(dāng)天進(jìn)貨量n=400,求利潤Y的分布列和數(shù)學(xué)期望E(Y)(統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值作為代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+1的單調(diào)減區(qū)間為(0,2)
(Ⅰ)求a,b的值;
(Ⅱ)當(dāng)x∈[0,2]時,不等式mf′(x)+9m>x恒成立,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案