已知三個數(shù)x-a,x,x+a,若f(x)=f(x+a)+f(x-a),則f(x)的一個周期T=
 

注:f(x)=f(x+a)+f(x-a)?f(x+3a)+f(x)=0?f(x)=f(x+6a)
考點:函數(shù)的周期性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)條件,結(jié)合周期函數(shù)的定義推導f(x+T)=f(x)即可.
解答: 解:由f(x)=f(x+a)+f(x-a),
則f(x+a)=f(x+2a)+f(x),
即f(x+a)=f(x+2a)+f(x+a)+f(x-a),
即f(x+2a)+f(x-a)=0,
則f(x+3a)+f(x)=0,
則f(x+3a)=-f(x),
即f(x+6a)=-f(x+3a)=f(x),
故函數(shù)的周期T=|6a|,
故答案為:|6a|
點評:本題主要考查函數(shù)周期的求解,根據(jù)條件推導f(x+T)=f(x)的形式是解決本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)復數(shù)z=-
1
2
+
3
2
i,則
|z|
z
的值為(  )
A、-
1
2
+
3
2
i
B、-
1
2
-
3
2
i
C、
1
2
+
3
2
i
D、
1
2
-
3
2
i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知{an}通項公式為an=
-2n
2n+1
.求證:{
1
an+1
}是等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)F是拋物線G:x2=4y的焦點,設(shè)A、B為拋物線G上異于原點的兩點,且滿足
FA
FB
=0,延長AF、BF分別交拋物線G與C、D,求四邊形ABCD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(1,1),b=(x2,x+2),若
a
,
b
共線,則實數(shù)x的值為( 。
A、-1B、2
C、-1或2D、1或-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)△ABC的三個頂點都在半徑為3的球上,且AB=
3
,BC=1,AC=2,O為球心,則三棱錐O-ABC的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=2x2-lnx在其定義域內(nèi)的一個子區(qū)間(k-1,k+1)內(nèi)不是單調(diào)函數(shù),則實數(shù)k的取值范圍是( 。
A、[1,3)
B、[1,
3
2
)
C、(-
1
2
,
3
2
)
D、[-
1
2
,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線與拋物線y=x2+1相切,則該雙曲線的離心率等于(  )
A、
3
B、
6
C、
5
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化成Asin(ωx+φ)+B的形式.
(1)f(x)=4cosxsin(x+
π
6
)-1
(2)f(x)=
3
sinxcosx-cos2x+
1
2

查看答案和解析>>

同步練習冊答案