13.命題“對任意實數(shù)x∈[2,3],關于x的不等式x2-a≤0恒成立”為真命題的一個必要不充分條件是(  )
A.a≥9B.a≤9C.a≤8D.a≥8

分析 命題“對任意實數(shù)x∈[2,3],關于x的不等式x2-a≤0恒成立”為真命題,可得a≥[x2]max

解答 解:命題“對任意實數(shù)x∈[2,3],關于x的不等式x2-a≤0恒成立”為真命題,
∴a≥[x2]max=9.
∴命題“對任意實數(shù)x∈[2,3],關于x的不等式x2-a≤0恒成立”為真命題的一個必要不充分條件是a≥8.
故選:D.

點評 本題考查了簡易邏輯的判定方法、函數(shù)的性質(zhì),考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.如圖,已知單位圓O與x軸正半軸相交于點M,點A,B在單位圓上,其中點A在第一象限,且∠AOB=$\frac{π}{2}$,記∠MOA=α,∠MOB=β.
(Ⅰ)若α=$\frac{π}{6}$,求點A,B的坐標;
(Ⅱ)若點A的坐標為($\frac{4}{5}$,m),求sinα-sinβ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.在空間直角坐標系中,點A(-1,2,0)關于平面yOz的對稱點坐標為(1,2,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.在下列區(qū)間中,函數(shù)f(x)=3x-2的零點所在的區(qū)間為( 。
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.設F1,F(xiàn)2分別是橢圓$E:{x^2}+\frac{y^2}{b^2}=1(0<b<1)$的左、右焦點,已知點F1的直線交橢圓E于A,B兩點,若|AF1|=2|BF1|,AF2⊥x軸,則橢圓E的方程為( 。
A.${x^2}+\frac{{3{y^2}}}{2}=1$B.${x^2}+\frac{{6{y^2}}}{5}=1$C.${x^2}+\frac{{5{y^2}}}{4}=1$D.${x^2}+\frac{{8{y^2}}}{7}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.將3本相同的語文書和2本相同的數(shù)學書分給四名同學,每人至少1本,不同的分配方法數(shù)有(  )
A.24B.28C.32D.36

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.過三個點A(1,3),B(4,2),C(1,-1)的圓交y軸于M,N兩點,則|MN|=(  )
A.2$\sqrt{6}$B.3$\sqrt{6}$C.2D.5$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.命題“若A=B,則A⊆B”與其逆命題、否命題、逆否命題這四個命題中,真命題的個數(shù)是( 。
A.0B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的圖象經(jīng)過$M(\sqrt{3},\frac{{\sqrt{10}}}{2})$,$N(2,\frac{{\sqrt{15}}}{3})$兩點,F(xiàn)是C的右焦點,D點坐標為(3,0).
(1)求橢圓C的標準方程;
(2)過點F的直線l交C于A、B兩點,求直線DA、DB的斜率之積的取值范圍.

查看答案和解析>>

同步練習冊答案