已知一個(gè)四棱錐P-ABCD的三視圖(正視圖與側(cè)視圖為直角三角形,俯視圖是帶有一條對(duì)角線的正方形)如圖,E是側(cè)棱PC的中點(diǎn).
(1)求四棱錐P-ABCD的體積;
(2)求證:平面APC⊥平面BDE.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
四面體的六條棱中,有五條棱長(zhǎng)都等于a.
(1)求該四面體的體積的最大值;
(2)當(dāng)四面體的體積最大時(shí),求其表面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在直角梯形ABCD中,AB∥CD,AD⊥AB,CD=2AB=4,AD=,E為CD的中點(diǎn),將△BCE沿BE折起,使得CO⊥DE,其中垂足O在線段DE內(nèi).
(1)求證:CO⊥平面ABED;
(2)問∠CEO(記為θ)多大時(shí),三棱錐C-AOE的體積最大,最大值為多少.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
下圖是一幾何體的直觀圖、主視圖、俯視圖、左視圖.
(1)若為的中點(diǎn),求證:面;
(2)證明面.
(3)求該幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,儲(chǔ)油灌的表面積為定值,它的上部是半球,下部是圓柱,半球的半徑等于圓柱底面半徑.
⑴試用半徑表示出儲(chǔ)油灌的容積,并寫出的范圍.
⑵當(dāng)圓柱高與半徑的比為多少時(shí),儲(chǔ)油灌的容積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在中,AB=2BF=4,C,E分別是AB,AF的中點(diǎn)(如下左圖).將此三角形沿CE對(duì)折,使平面AEC⊥平面BCEF(如下右圖),已知D是AB的中點(diǎn).
(1)求證:CD∥平面AEF;
(2)求證:平面AEF⊥平面ABF;
(3)求三棱錐C-AEF的體積,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,圓柱的高為2,底面半徑為,AE、DF是圓柱的兩條母線,過作圓柱的截面交下底面于,四邊形ABCD是正方形.
(Ⅰ)求證;
(Ⅱ)求四棱錐E-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某個(gè)實(shí)心零部件的形狀是如下圖所示的幾何體,其下部是底面均是正方形,側(cè)面是全等的等腰梯形的四棱臺(tái),上部是一個(gè)底面與四棱臺(tái)的上底面重合,側(cè)面是全等的矩形的四棱柱.
(1)證明:直線平面;
(2)現(xiàn)需要對(duì)該零部件表面進(jìn)行防腐處理.已知,,,(單位:),每平方厘米的加工處理費(fèi)為元,需加工處理費(fèi)多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com