已知命題P:方程x2+(m-3)x+1=0無實根,命題Q:方程x2+
y2
m-1
=1
是焦點在y軸上的橢圓.若¬P與P∧Q同時為假命題,求m的取值范圍.
∵¬P與P∧Q同時為假命題,
∴P是真命題,Q是假命題.
由命題P:方程x2+(m-3)x+1=0無實根是真命題,
得△=(m-3)2-4<0,解得1<m<5;
命題Q:方程x2+
y2
m-1
=1
是焦點在y軸上的橢圓是假命題,
得m-1≤1,解得m≤2.
綜上所述,m的取值范圍是{m|1<m≤2}.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:填空題

已知函數(shù)f(x)的定義域[-1,5],部分對應(yīng)值如表
x-1045
f(x)1221
f(x)的導函數(shù)y=f′(x)的圖象如圖所示
下列關(guān)于函數(shù)f(x)的命題;
①函數(shù)f(x)的值域為[1,2];
②函數(shù)f(x)在[0,2]上是減函數(shù);
③如果當x∈[-1,t]時,f(x)的最大值是2,那么t的最大值為4;
④當1<a<2時,函數(shù)y=f(x)-a有4個零點.
其中真命題為______(填寫序號)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在△ABC中,有下列結(jié)論:
①若R為△ABC外接圓的半徑,則S△ABC=2R2sinAsinBsinC
②sinA+sinB>sinC,sinA-sinB<sinC
③若a2<b2+c2,則△ABC為銳角三角形;
④若(a+c)(a-c)=b(b+c),則A為120°;
其中結(jié)論正確的是______.(填上全部正確的結(jié)論)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

給出下列命題:
(1)若
a
b
=
a
c
,則
b
=
c

(2)對空間任意點O與不共線的三點A,B,C,若
OP
=x
OA
+y
OB
+z
OC
(x,y,z∈R),則P,A,B,C四點共面;
(3)“曲線C上的點的坐標都是方程f(x,y)=0的解”是“曲線C的方程是f(x,y)=0”的必要條件;
(4)(
c
b
a
-(
a
c
b
c
垂直.
寫出以上命題為真命題的序號______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

命題“若p則q”及其逆命題,否命題,逆否命題中真命題的個數(shù)可能是( 。
A.1B.2C.3D.都有可能

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列命題中:
①命題p:“?x∈R,使得2x2-1<0”,則?p是假命題.
②“若x+y=0,則x,y互為相反數(shù)”的逆命題為假命題.
③命題p:“?x,x2-2x+3>0”,則?p:“?x,x2-2x+3<0”.
④命題“若?p,則q”的逆否命題是“若?q,則p”.
其中正確命題是( 。
A.②③B.①②C.①④D.②④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列命題是真命題的是( 。
A.?x∈R,x2+2>2B.?x0∈Q,x02=3
C.?x∈N,x2≥1D.?x0∈Z,x03<1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖在四面體ABCD中,若截面PQMN是正方形,則在下列命題中正確的有______.(填上所有正確命題的序號)
①AC⊥BD
②AC=BD
③AC截面PQMN
④異面直線PM與BD所成的角為45°.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列四個命題:正確命題的個數(shù)為(  )
①若函數(shù)f(x)=ax2+bx+2與x軸沒有交點,則a≠0且b2-8a<0;
②若logm3<lgn3<0,則0<n<m<1;
③對于函數(shù)f(x)=lnx的定義域中任意的x1,x2(x1≠x2)必有f(
x1+x2
2
)
f(x1)+f(x2)
2
;
④若函數(shù)f(x)=3x-2x-3,則方程f(x)=0有2個實數(shù)根.
A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案