【題目】已知函數(shù)的定義域為,其圖象關(guān)于點中心對稱,其導(dǎo)函數(shù)為,當(dāng)時, ,則不等式的解集為__________

【答案】

【解析】由題意設(shè)gx=x+1fx),
g′x=fx+x+1f′x),
∵當(dāng)x-1時,(x+1[fx+x+1f′x]0
∴當(dāng)x-1時,fx+x+1f′x)>0,
gx)在(-∞-1)上遞增,
∵函數(shù)fx)的定義域為R,其圖象關(guān)于點(-1,0)中心對稱,
∴函數(shù)fx-1)的圖象關(guān)于點(0,0)中心對稱,
則函數(shù)fx-1)是奇函數(shù),
hx=gx-1=xfx-1),
hx)是R上的偶函數(shù),且在(-∞,0)遞增,
由偶函數(shù)的性質(zhì)得:函數(shù)hx)在(0+∞)上遞減,
h1=f0),∴不等式xfx-1)>f0)化為:hx)>h1),
|x|1,解得-1x1,
∴不等式的解集是(-11),
故答案為:(-1,1).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對某體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調(diào)查,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:

將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為“體育迷”.
(1)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此資料你是否認(rèn)為“體育迷”與性別有關(guān)?

非體育迷

體育迷

合計

10

55

合計


(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的“體育迷”人數(shù)為X,若每次抽取的結(jié)果是相互獨立的,求X的分布列,期望E(X)和方差D(X)

P( K2≥k)

0.05

0.01

k

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=2cos(ωx+φ)(ω>0,0<φ<π)為奇函數(shù),該函數(shù)的部分圖象如圖所示,點A、B分別為該部分圖象的最高點與最低點,且這兩點間的距離為4 ,則函數(shù)f(x)圖象的一條對稱軸的方程為(

A.x=
B.x=
C.x=4
D.x=2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形和四邊形均是直角梯形, 二面角是直二面角, .

(1)證明:在平面上,一定存在過點的直線與直線平行;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某汽車公司為了考查某4S店的服務(wù)態(tài)度,對到店維修保養(yǎng)的客戶進行回訪調(diào)查,每個用戶在到此店維修或保養(yǎng)后可以對該店進行打分,最高分為10分.上個月公司對該4S店的100位到店維修保養(yǎng)的客戶進行了調(diào)查,將打分的客戶按所打分值分成以下幾組:
第一組[0,2),第二組[2,4),第三組[4,6),第四組[6,8),第五組[8,10],得到頻率分布直方圖如圖所示.
(I)求所打分值在[6,10]的客戶的人數(shù):
(II)該公司在第二、三組客戶中按分層抽樣的方法抽取6名客戶進行深入調(diào)查,之后將從這6人中隨機抽取2人進行物質(zhì)獎勵,求得到獎勵的人來自不同組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若定義域為R的偶函數(shù)f(x)在[0,+∞)上是增函數(shù),則不等式f(log4x)+f(log0.25x)≤2f(1)的解集為(  )

A. [,2] B. [,4] C. [,2] D. [,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)的定義域為[﹣1,1],圖象如圖1所示;函數(shù)g(x)的定義域為[﹣2,2],圖象如圖2所示,設(shè)函數(shù)f(g(x))有m個零點,函數(shù)g(f(x))有n個零點,則m+n等于(  )

A. 6 B. 10 C. 8 D. 1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知單調(diào)遞增的等比數(shù)列滿足: ,

(1)求數(shù)列的通項公式;

(2)若,數(shù)列的前項和為 , 成立的正整數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1當(dāng)時,若,求的取值范圍

2若定義在上奇函數(shù)滿足,且當(dāng)時, ,

上的反函數(shù);

3對于(2)中的若關(guān)于的不等式上恒成立,求實

數(shù)的取值范圍

查看答案和解析>>

同步練習(xí)冊答案