化簡:
(1)
1-2sin40°cos40°
;
(2)sin2α+sin2β-sin2αsin2β+cos2αcos2β.
考點:同角三角函數(shù)基本關系的運用,二倍角的正弦
專題:計算題,三角函數(shù)的求值
分析:運用同角三角函數(shù)基本關系,同角的平方關系:sin2α=1-cos2α,即可化簡求得.
解答: 解:(1)
1-2sin40°cos40°
=
(cos40°-sin40°)2
=cos40°-sin40°
(2)sin2α+sin2β-sin2αsin2β+cos2αcos2β=sin2α+1-cos2β-sin2αsin2β+cos2αcos2β=sin2α(1-sin2β)+1-cos2β(1-cos2α)=sin2αcos2β+1-cos2βsin2α=1
點評:本題考查三角函數(shù)的化簡,考查同角的平方關系,屬于基本知識的考查.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}滿足:a1=1,點(an,an+1)(n∈N*)均在直線y=2x+1上.
(Ⅰ)證明數(shù)列{an+1}為等比數(shù)列,并求出數(shù)列{an}的通項公式;
(Ⅱ)若bn=log2(an+1),求數(shù)列{(an+1)•bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果函數(shù)f(x)是奇函數(shù),且在(0,+∞)上單調遞增,且f(2)=0,那么
f(x)-f(-x)
x
<0解集為(  )
A、(-∞,-2)∪(0,2)
B、(-2,0)∪(0,2)
C、(-∞,-2)∪(2,+∞
D、(-2,0)∪(2,+∞

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

sinθ+cosθ
sinθ-cosθ
=2,則sin2θ=( 。
A、1
B、3
C、
1
2
D、
3
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a+b=1(a,b>0),則ab的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

復數(shù)
i2014
1+i
(i
是虛數(shù)單位)在復平面內對應的點位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若α,β是某三角形的兩個內角,并且滿足sinα=cosβ,則該三角形的形狀必為( 。
A、直角三角形
B、銳角三角形
C、等腰三角形
D、直角三角形或銳角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合A={x|x2≤16},B={x|
x-5
x+1
<0},C={x|x<a},全集為實數(shù)集R.
(Ⅰ)求A∪B,(CRA)∩B;
(Ⅱ)若A∩C≠φ,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求下列函數(shù)的值域:y=2x2-3x-2,x∈[-3,5].

查看答案和解析>>

同步練習冊答案