(2013•甘肅三模)已知A,B,C,D是同一球面上的四個點,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6,則該球的表面積為( 。
分析:由題意把A、B、C、D擴展為三棱柱如圖,求出上下底面中心連線的中點與A的距離為球的半徑,然后求出球的表面積.
解答:解:由題意畫出幾何體的圖形如圖,
把A、B、C、D擴展為三棱柱,
上下底面中心連線的中點與A的距離為球的半徑,
AD=2AB=6,OE=3,△ABC是正三角形,
所以AE=
2
3
AB2-(
1
2
AB)2
=
3

AO=
32+(
3
)2
=2
3

所求球的表面積為:4π(2
3
2=48π.
故選D.
點評:本題考查球的內(nèi)接體與球的關(guān)系,考查空間想象能力,利用割補法結(jié)合球內(nèi)接多面體的幾何特征求出球的半徑是解題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•甘肅三模)已知函數(shù)y=
x3
3
+
mx2+(m+n)x+1
2
的兩個極值點分別為x1,x2,且x1∈(0,1),x2∈(1,+∞),記分別以m,n為橫、縱坐標的點P(m,n)表示的平面區(qū)域為D,若函數(shù)y=loga(x+4)(a>1)的圖象上存在區(qū)域D內(nèi)的點,則實數(shù)a的取值范圍為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•甘肅三模)設(shè)曲線y=xn+1(n∈N*)在點(1,1)處的切線與x軸的交點的橫坐標為xn,令an=lgxn,則a1+a2+…+a99的值為
-2
-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•甘肅三模)在三棱柱ABC-A1B1C1中,側(cè)面ABB1A1為矩形,AB=1,AA1=
2
,D為AA1的中點,BD與AB1交于點O,CO丄側(cè)面ABB1A1
(Ⅰ)證明:BC⊥AB1;
(Ⅱ)若OC=OA,求三棱錐B1-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•甘肅三模)執(zhí)行如圖所示的程序框圖,輸出的S值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•甘肅三模)觀察下列算式:
l3=1,
23=3+5,
33=7+9+11,
43=13+15+17+19,

若某數(shù)n3按上述規(guī)律展開后,發(fā)現(xiàn)等式右邊含有“2013”這個數(shù),則n=
45
45

查看答案和解析>>

同步練習冊答案