【題目】如圖所示,三棱錐P﹣ABC中,D是AC的中點,,,.
(1)求證:PD⊥平面ABC;
(2)求二面角P﹣AB﹣C的正切值大。
【答案】(1)見解析 (2)
【解析】
(1)連接,推導(dǎo)出,由此能證明平面.(2)取的中點,連接,則,由,得,由平面,得,由,得平面,從而,進(jìn)而是二面角的平面角,解三角形求得二面角的正切值.
(1)連接BD,∵D是AC的中點,,∴.
∵,,,∴.
∴,即AB⊥BC.
∴.
∵,,
∴.∴PD⊥BD.
∵AC∩BD=D,∴PD⊥平面ABC.
(2)取AB的中點E,連接DE、PE,
由E為AB的中點,知DE∥BC,
∵AB⊥BC,∴AB⊥DE.∵PD⊥平面ABC,∴PD⊥AB.
又AB⊥DE,,
∴AB⊥平面PDE,∴PE⊥AB.
∴是二面角P﹣AB﹣C的平面角.
在△PED中,,,,
∴ .
∴二面角P﹣AB﹣C的正切值為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=cos(x+ ),則下列結(jié)論錯誤的是( )
A.f(x)的一個周期為﹣2π
B.y=f(x)的圖象關(guān)于直線x= 對稱
C.f(x+π)的一個零點為x=
D.f(x)在( ,π)單調(diào)遞減
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某科研機(jī)構(gòu)研發(fā)了某種高新科技產(chǎn)品,現(xiàn)已進(jìn)入實驗階段.已知實驗的啟動資金為10萬元,從實驗的第一天起連續(xù)實驗,第天的實驗需投入實驗費用為元,實驗30天共投入實驗費用17700元.
(1)求的值及平均每天耗資最少時實驗的天數(shù);
(2)現(xiàn)有某知名企業(yè)對該項實驗進(jìn)行贊助,實驗天共贊助元.為了保證產(chǎn)品質(zhì)量,至少需進(jìn)行50天實驗,若要求在平均每天實際耗資最小時結(jié)束實驗,求的取值范圍.(實際耗資=啟動資金+試驗費用-贊助費)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,圓與軸負(fù)半軸交于點,過點 的直線,分別與圓交于,兩點.
(1)若,,求△的面積;
(2)過點作圓O的兩條切線,切點分別為E,F(xiàn),求;
(3)若,求證:直線過定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過拋物線C:y2=2px(p>0)的焦點F的直線交拋物線于A,B兩點,且A,B兩點的縱坐標(biāo)之積為﹣4.
(1)求拋物線C的方程;
(2)已知點D的坐標(biāo)為(4,0),若過D和B兩點的直線交拋物線C的準(zhǔn)線于P點,求證:直線AP與x軸交于一定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為圓O的直徑,C在圓O上,CF⊥AB于F,點D為線段CF上任意一點,延長AD交圓O于E,∠AEC=30°.
(1)求證:AF=FO;
(2)若CF= ,求ADAE的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200輛/千米時,造成堵塞,此時車流速度為0;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當(dāng)20≤x≤200時,車流速度v是車流密度x的一次函數(shù).
(1)當(dāng)0≤x≤200時,求函數(shù)v(x)的表達(dá)式;
(2)當(dāng)車流密度x為多大時,車流量(單位時間內(nèi)通過橋上某觀測點的車輛數(shù),單位:輛/小時)f(x)=xv(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正四棱錐P-ABCD中,O為底面正方形的中心,側(cè)棱PA與底面ABCD所成的角的正切值為.
(1)若E是PB的中點,求證OE∥平面PCD
(2)求側(cè)面PAD與底面ABCD所成的二面角的大小
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com