【題目】設函數(shù),已知有且僅有3個零點,下列結論正確的是(

A.上存在,,滿足

B.有且僅有1個最小值點

C.單調遞增

D.的取值范圍是

【答案】AD

【解析】

A選項,易知最小正周期;D,結合伸縮變換先求軸右側的前4個零點,進而得到軸右側的前4個零點,再列出不等式組,即可得的范圍;B,可以把第三個零點與第四個零點的中點坐標求出來,利用選項D的范圍,可得該中點坐標可能在;C,根據(jù)選項D的范圍,可得的范圍不在區(qū)間.

: A,有且僅有3個零點,則函數(shù)的最小正周期,

上存在,,滿足,

所以可以成立,A正確;

D,函數(shù)軸右側的前4個零點分別是:,

則函數(shù)軸右側的前4個零點分別是:,

因為函數(shù)有且僅有3個零點,

所以,D正確.

B,D選項中前4個零點分別是:,

,

此時可使函數(shù)取得最大值,

因為,所以,

所以可能存在2個最小值點,B錯誤;

C,D選項中,所以,

區(qū)間不是的子區(qū)間,C錯誤.

故選: AD

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

1)若函數(shù)的圖象上存在關于原點對稱的點,求實數(shù)的取值范圍;

2)設,已知上存在兩個極值點,,且,求證:(其中為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為矩形,,側面為等邊三角形且垂直于底面,的中點.

(1)在棱上取一點使直線∥平面并證明;

(2)在(1)的條件下,當棱上存在一點,使得直線與底面所成角為時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線的參數(shù)方程為,(為參數(shù)),將曲線經(jīng)過伸縮變換后得到曲線,在以原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為.

1)說明曲線是哪一種曲線,并將曲線的方程化為極坐標方程;

2)已知點是曲線上的任意一點,求點到直線的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在邊長為2的等邊三角形中,點分別是邊上的點,滿足,(),將沿直線折到的位置.在翻折過程中,下列結論不成立的是(

A.在邊上存在點,使得在翻折過程中,滿足平面

B.存在,使得在翻折過程中的某個位置,滿足平面平面

C.,當二面角為直二面角時,

D.在翻折過程中,四棱錐體積的最大值記為,的最大值為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

1)若,曲線在點處的切線與直線平行,求的值;

2)若,且函數(shù)的值域為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,二面角為直二面角,為線段的中點,,.

1)求證:平面平面;

2)求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,平面五邊形中,,,是邊長為2的正三角形.現(xiàn)將沿折起,得到四棱錐(如圖2),且.

1)求證:平面平面;

2)在棱上是否存在點,使得平面?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為配合“2019雙十二促銷活動,某公司的四個商品派送點如圖環(huán)形分布,并且公司給四個派送點準備某種商品各50.根據(jù)平臺數(shù)據(jù)中心統(tǒng)計發(fā)現(xiàn),需要將發(fā)送給四個派送點的商品數(shù)調整為40,45,5461,但調整只能在相鄰派送點進行,每次調動可以調整1件商品.為完成調整,則(

A.最少需要16次調動,有2種可行方案

B.最少需要15次調動,有1種可行方案

C.最少需要16次調動,有1種可行方案

D.最少需要15次調動,有2種可行方案

查看答案和解析>>

同步練習冊答案