【題目】對于函數(shù),若存在成立,則稱的不動點.如果函數(shù)

有且只有兩個不動點0,2,且

(1)求函數(shù)的解析式;

(2)已知各項不為零的數(shù)列,求數(shù)列通項;

(3)如果數(shù)列滿足,求證:當時,恒有成立.

【答案】(1)(2)(3)見解析

【解析】

(1)根據(jù)題意得方程有兩解0,2,代入可得再根據(jù)結合解得c,b,最后代入驗證舍去不滿足題意的解,(2)代入化簡得再根據(jù)和項與通項關系解得最后代入驗證,根據(jù)等差數(shù)列通項公式求結果,(3)利用反證法,假設先由,再根據(jù)兩者矛盾,即得結論.

解:設得:由違達定理得:

解得代入表達式,由

不止有兩個不動點,

(2)由題設得 (A)

(B)

由(A)(B)得:

解得(舍去)或;由,若這與矛盾,

,即{是以1為首項,1為公差的等差數(shù)列,

;

(3)證法(一):運用反證法,假設則由(1)知

,而當

這與假設矛盾,故假設不成立,∴.

證法(二):由

<0結論成立;

,此時從而

即數(shù)列{}時單調遞減,由,可知上成立.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某某大學藝術專業(yè)400名學生參加某次測評,根據(jù)男女學生人數(shù)比例,使用分層抽樣的方法從中隨機抽取了100名學生,記錄他們的分數(shù),將數(shù)據(jù)分成7組: ,并整理得到如下頻率分布直方圖:

(Ⅰ)從總體的400名學生中隨機抽取一人,估計其分數(shù)小于70的概率;

(Ⅱ)已知樣本中分數(shù)小于40的學生有5人,試估計總體中分數(shù)在區(qū)間[40,50)內的人數(shù);

(Ⅲ)已知樣本中有一半男生的分數(shù)不小于70,且樣本中分數(shù)不小于70的男女生人數(shù)相等.試估計總體中男生和女生人數(shù)的比例.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,平面五邊形ABCDE中,AB∥CD,∠BAD=90°,AB=2,CD=1,△ADE是邊長為2的正三角形.現(xiàn)將△ADE沿AD折起,得到四棱錐E﹣ABCD(如圖2),且DE⊥AB.
(Ⅰ)求證:平面ADE⊥平面ABCD;
(Ⅱ)求平面BCE和平面ADE所成銳二面角的大;
(Ⅲ)在棱AE上是否存在點F,使得DF∥平面BCE?若存在,求 的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= eax(a>0).
(1)當a=2時,求曲線y=f(x)在x= 處的切線方程;
(2)討論方程f(x)﹣1=0根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱中,,,,分別為棱的中點.

(1)求證:∥平面

(2)若異面直線 所成角為,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某產品按質量分10個檔次,生產最低檔次的利潤是8/件;每提高一個檔次,利潤每件增加2元,每提高一個檔次,產量減少3件,在相同時間內,最低檔次的產品可生產60件.問:在相同時間內,生產第幾檔次的產品可獲得最大利潤?(最低檔次為第一檔次)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解春季晝夜溫差大小與某種子發(fā)芽多少之間的關系,現(xiàn)在從4月份的30天中隨機挑選了5天進行研究,且分別記錄了每天晝夜溫差與每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下表格:

日期

4月1日

4月7日

4月15日

4月21日

4月30日

溫差x/℃

10

11

13

12

8

發(fā)芽數(shù)y/顆

23

25

30

26

16

(1)從這5天中任選2天,記發(fā)芽的種子數(shù)分別為,求事件“均不小于25”的概率;

(2) 若由線性回歸方程得到的估計數(shù)據(jù)與4月份所選5天的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的. 請根據(jù)4月74月15日與4月21日這三天的數(shù)據(jù),求出關于的線性回歸方程,并判定所得的線性回歸方程是否可靠?

參考公式:

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體ABCD﹣A1B1C1D1中,E、F分別為棱DD1和BC中點G為棱A1B1上任意一點,則直線AE與直線FG所成的角為(

A.30°
B.45°
C.60°
D.90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知AB、CABC的三個內角,則在下列各結論中,不正確的為(  )

A. sin2A=sin2B+sin2C+2sinBsinCcos(BC)

B. sin2B=sin2A+sin2C+2sinAsinCcos(AC)

C. sin2C=sin2A+sin2B-2sinAsinBcosC

D. sin2(AB)=sin2A+sin2B-2sinBsinCcos(AB)

查看答案和解析>>

同步練習冊答案