【題目】ABC中,角A,B,C的對邊分別為a,b,c,且2bcosC+c=2a.

(Ⅰ)求角B的大小;

(Ⅱ)若,求的值.

【答案】(1)(2)

【解析】試題分析:(1)由于2bcosC+c=2a,是關(guān)于邊的一次齊次式,所以用正弦定理把邊化為角,可得到。(2)由(1)中,可知A,B角己知,同時(shí)根據(jù)三角形內(nèi)角為,也可以sinC,所以,可解。

試題解析:(Ⅰ)在ABC中,∵2bcosC+c=2a,

由正弦定理,得2sinBcosC+sinC=2sinA,

∵A+B+C=π,

∴sinA=sin(B+C)=sinBcosC+cosBsinC,…

∴2sinBcosC+sinC=2(sinBcosC+cosBsinC),

∴sinC=2cosBsinC,

∵0<C<π,∴sinC≠0,

,

∵0<B<π,∴

(Ⅱ)∵三角形ABC中,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正方形中, 的中點(diǎn)為點(diǎn), 的中點(diǎn)為點(diǎn),沿向上折起得到,使得面,此時(shí)點(diǎn)位于點(diǎn)處.

(Ⅰ)證明: ;

(Ⅱ)求面與面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC中,角A,B,C的對邊分別是a,b,c,且2cos2 = sinB,a=3c.
(1)求角B的大小和tanC的值;
(2)若b=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)幾何體的三視圖如圖所示(單位長度為:cm):

(1)求該幾何體的體積;
(2)求該幾何體的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)是圓上的任意一點(diǎn),點(diǎn)為圓的圓心,點(diǎn)與點(diǎn)關(guān)于平面直角系的坐標(biāo)原點(diǎn)對稱,線段的垂直平分線與線段交于點(diǎn).

(1)求動點(diǎn)的軌跡的方程;

(2)若軌跡軸正半軸交于點(diǎn),直線交軌跡兩點(diǎn),求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有以下三個(gè)案例:

案例一:從同一批次同類型號的10袋牛奶中抽取3袋檢測其三聚氰胺含量;

案例二:某公司有員工800人:其中高級職稱的160人,中級職稱的320人,初級職稱200人,其余人員120人.從中抽取容量為40的樣本,了解該公司職工收入情況;

案例三:從某校1000名學(xué)生中抽10人參加主題為“學(xué)雷鋒,樹新風(fēng)”的志愿者活動.

(1)你認(rèn)為這些案例應(yīng)采用怎樣的抽樣方式較為合適?

(2)在你使用的分層抽樣案例中寫出每層抽樣的人數(shù);

(3)在你使用的系統(tǒng)抽樣案例中按以下規(guī)定取得樣本編號:如果在起始組中隨機(jī)抽取的碼為(編號從0開始),那么第組(組號從0開始,)抽取的號碼的百位數(shù)為組號,后兩位數(shù)為的后兩位數(shù).若,試求出時(shí)所抽取的樣本編號.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若不等式x2+ax+1≥0對一切x∈(0, ]成立,則a的最小值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】醫(yī)院用甲、乙兩種原料為手術(shù)后的病人配營養(yǎng)餐.甲種原料每10g含5單位蛋白質(zhì)和10單位鐵質(zhì),售價(jià)3元;乙種原料每10g含7單位蛋白質(zhì)和4單位鐵質(zhì),售價(jià)2元.若病人每餐至少需要35單位蛋白質(zhì)和40單位鐵質(zhì).試問:應(yīng)如何使用甲、乙原料,才能既滿足營養(yǎng),又使費(fèi)用最。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是指大氣中直徑小于或等于微米的顆粒物,也稱為可入肺顆粒物,對人體健康和大氣環(huán)境質(zhì)量的影響很大.我國標(biāo)準(zhǔn)采用世衛(wèi)組織設(shè)定的最寬限值.即日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米75微克/立方米之間空氣質(zhì)量為二級;75微克/立方米以上空氣質(zhì)量為超標(biāo).

某市環(huán)保局從360天的市區(qū)監(jiān)測數(shù)據(jù)中統(tǒng)計(jì)了1月至10月的每月的平均值(單位:微克/立方米),如下表所示.

月份

1

2

3

4

5

6

7

8

9

10

月均值

32

28

25

31

34

33

45

44

63

68

(1)從5月到10月的這6個(gè)數(shù)據(jù)中任取2個(gè)數(shù)值,求這個(gè)2個(gè)數(shù)值均為二級的概率;

(2)求月均值關(guān)于月份的回歸直線方程,其中.

查看答案和解析>>

同步練習(xí)冊答案