分析 (1)由橢圓的焦距為4,且點(-2,$\sqrt{2}$)在橢圓C上,列出方程組求出a,b,由此能求出橢圓C的方程.
(2)B(0,-2),當直線l的斜率不存在時,推導出直線l為x=2,當直線l的斜率k存在時,設直線l的方程為y=kx+m,聯(lián)立$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1}\end{array}\right.$,得(1+2k2)x2+4kmx+2m2-8=0,由此利用韋達定理、直線斜率公式,結合已知條件能求出直線l經(jīng)過定點(2,2).
解答 解:(1)∵橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為4,且點(-2,$\sqrt{2}$)在橢圓C上,
∴$\left\{\begin{array}{l}{2c=4}\\{\frac{4}{{a}^{2}}+\frac{2}{^{2}}=1}\\{{a}^{2}=^{2}+{c}^{2}}\end{array}\right.$,解得a2=8,b2=4,
∴橢圓C的方程為$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$.
(2)∵點B為橢圓$\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1$的下頂點,∴B(0,-2),
當直線l的斜率不存在時,設直線l:x=x0,(-2$\sqrt{2}$$<{x}_{0}<2\sqrt{2}$,x0≠0),
則P(x0,y0),Q(x0,-y0),
∵直線BQ與BP的斜率之和為2,
∴$\frac{{y}_{0}+2}{{x}_{0}}$+$\frac{-{y}_{0}+2}{{x}_{0}}$=2,解得x0=2,∴直線l為x=2,過定點(2,2).
當直線l的斜率k存在時,設直線l的方程為y=kx+m,
聯(lián)立$\left\{\begin{array}{l}{y=kx+m}\\{\frac{{x}^{2}}{8}+\frac{{y}^{2}}{4}=1}\end{array}\right.$,得(1+2k2)x2+4kmx+2m2-8=0,
設P(x1,y1),Q(x2,y2),則${x}_{1}+{x}_{2}=-\frac{4km}{1+2{k}^{2}}$,x1x2=$\frac{2{m}^{2}-8}{1+2{k}^{2}}$,
∵直線BQ與BP的斜率之和為2,
∴kBQ+kBP=$\frac{{y}_{2}+2}{{x}_{2}}$+$\frac{{y}_{1}+2}{{x}_{1}}$=$\frac{k{x}_{2}+m+2}{{x}_{2}}$+$\frac{k{x}_{1}+m+2}{{x}_{1}}$
=2k+$\frac{(m+2)({x}_{1}+{x}_{2})}{{x}_{1}{x}_{2}}$=2k+$\frac{(m+2)×(-\frac{4km}{1+2{k}^{2}})}{\frac{2{m}^{2}-8}{1+2{k}^{2}}}$
=2k-$\frac{2km}{m-2}$=$\frac{4k}{2-m}$=2,
∴m=2-2k,
∴y=kx+m=kx+2-2k=k(x-2)+2,
∴直線y=kx+m過定點(2,2).
綜上,直線l經(jīng)過定點(2,2).
點評 本題考查橢圓方程的求法,考查直線是否過定點的判斷與求法,是中檔題,解題時要認真審題,注意橢圓性質、直線斜率公式、韋達定理的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2 | B. | $\frac{2}{3}$ | C. | $\frac{3}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 10 | B. | 11 | C. | 11或12 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com