15.湖心有四座小島,其中任何三座都不在一條直線上.?dāng)M在它們之間修建3座橋,以便從其中任何一座小島出發(fā)皆可通過這三座橋到達其它小島.則不同的修橋方案有( 。
A.4種B.16種C.20種D.24種

分析 本題是一個分類計數(shù)問題,.要把四個小島連接起來,共有6個位置可以建設(shè)橋梁,要建三座有C63種結(jié)果,其中有4種情況是圍成三角形,不合題意,減去不合題意的,得到結(jié)果.

解答 解:由題意知本題是一個分類計數(shù)問題,
要把四個小島連接起來,共有6個位置可以建設(shè)橋梁,要建三座有C63=20種結(jié)果,
其中有4種情況是圍成三角形,不合題意,不則不同的修橋方案有20-4=16種.
故選B.

點評 本題考查分類計數(shù)原理,是一個基礎(chǔ)題,這種題目在解題時注意要減去不合題意的情況,即用三座橋連接起三個小島.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{a+lnx}{x}$在x=1處取得極值.
(1)求a的值,并討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)x∈[1,+∞)時,f(x)≥$\frac{m}{1+x}$恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若f(x)是冪函數(shù),且滿足$\frac{f(9)}{f(3)}$=2,則f($\frac{1}{9}$)=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)定義域為R的奇函數(shù)$f(x)=\frac{1}{{{2^x}+a}}-\frac{1}{2}$(a為實數(shù)).
(Ⅰ)求a的值;
(Ⅱ)判斷f(x)的單調(diào)性(不必證明),并求出f(x)的值域;
(Ⅲ)若對任意的x∈[1,4],不等式f(k-$\frac{2}{x}$)+f(2-x)>0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.某工廠生產(chǎn)A、B、C三種不同型號的產(chǎn)品,產(chǎn)品數(shù)量之比依次為2:3:5,現(xiàn)用分層抽樣方法抽出一個容量為n的樣本,樣本中B種型號產(chǎn)品比A種型號產(chǎn)品多8件.那么此樣本的容量n=( 。
A.80B.120C.160D.60

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.國家實施二孩放開政策后,為了了解人們對此政策持支持態(tài)度是否與年齡有關(guān),計生部門將已婚且育有一孩的居民分成中老年組(45歲以上,含45歲)和中青年組(45歲以下,不含45歲)兩個組別,每組各隨機調(diào)查了50人,對各組中持支持態(tài)度和不支持態(tài)度的人所占的頻率繪制成等高條形圖,如圖所示:
支持不支持合計
中老年組104050
中青年組252550
合 計3565100
(1)根據(jù)以上信息完成2×2列聯(lián)表;
(2)是否有99%以上的把握認為人們對此政策持支持態(tài)度與年齡有關(guān)?
P(K2≥k00.0500.0100.001
k03.8416.63510.828
附:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.執(zhí)行如圖所示的程序,若輸出的結(jié)果為2,則輸入的x的值為( 。
A.0或-1B.0或2C.-1或2D.-1或0或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合M={y|y=-x2+4},N={x|y=log2x},則M∩N=( 。
A.[4,+∞)B.(-∞,4]C.(0,4)D.(0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖1,四邊形ABCD為直角梯形,AD∥BC,AD⊥AB,AD=1,BC=2,E為CD上一點,F(xiàn)為BE的中點,且DE=1,EC=2,現(xiàn)將梯形沿BE折疊(如圖2),使平面BCE⊥ABED.
(1)求證:平面ACE⊥平面BCE;
(2)能否在邊AB上找到一點P(端點除外)使平面ACE與平面PCF所成角的余弦值為$\frac{\sqrt{6}}{3}$?若存在,試確定點P的位置,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案