7.已知Sn為數(shù)列{an}的前n項(xiàng)和,且滿足Sn-2an=n-4.
(1)證明{Sn-n+2}為等比數(shù)列;
(2)設(shè)數(shù)列{Sn}的前n項(xiàng)和Tn,比較Tn與2n+2-5n的大。

分析 (1)根據(jù)數(shù)列的遞推公式可得Sn-n+2=2[Sn-1-(n-1)+2],即可證明,
(2)利用分組求和求出Tn,再利用作差法比較大小即可

解答 解:(1)證明:注意到n=1時,S1-1+2=4,
n≥2時原式轉(zhuǎn)化為:Sn=2(Sn-Sn-1)=n-4,即Sn=2Sn-1-n+4,
所以Sn-n+2=2[Sn-1-(n-1)+2],
所以{Sn-n+2}為首項(xiàng)為4,公比為2等比數(shù)列.
(2)由(1)知:Sn-n+2=2n+1,所以Sn=2n+1+n-2,
于是Tn=(22+23+…+2n+1)+(1+2+…+n)-2n
=$\frac{{4(1-{2^n})}}{1-2}+\frac{n(n+1)}{2}-2n$=$\frac{{{2^{n+3}}+{n^2}-3n-8}}{2}$.
所以${T_n}-{2^{n+2}}+5n$=$\frac{{{2^{n+3}}+{n^2}-3n-8}}{2}-{2^{n+2}}+5n$=$\frac{1}{2}(n-1)(n+8)$,
因?yàn)閚≥1,所以${T_n}-{2^{n+2}}+5n≥0$即${T_n}≥{2^{n+2}}-5n$,當(dāng)且僅當(dāng)n=1時取等號.

點(diǎn)評 本題主要考查等比數(shù)列的求和與等比關(guān)系的確定,解答本題的關(guān)鍵是熟練掌握等比數(shù)列的性質(zhì),并熟練掌握數(shù)列的求和公式,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.?dāng)?shù)列{an}滿足a1=2,a2=1,并且$\frac{{a}_{n}}{{a}_{n-1}}$+$\frac{{a}_{n}}{{a}_{n+1}}$=2(n≥2),則數(shù)列{an}的第100項(xiàng)為( 。
A.$\frac{1}{{{2^{100}}}}$B.$\frac{1}{{{2^{50}}}}$C.$\frac{1}{100}$D.$\frac{1}{50}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某學(xué)校上午安排上四節(jié)課,每節(jié)課時間為40分鐘,第一節(jié)課上課時間為8:00~8:40,課間休息10分鐘.某學(xué)生因故遲到,若他在9:10~10:00之間到達(dá)教室,則他聽第二節(jié)課的時間不少于10分鐘的概率為( 。
A.$\frac{1}{5}$B.$\frac{3}{10}$C.$\frac{2}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.某保險公司針對一個擁有20000人的企業(yè)推出一款意外險產(chǎn)品,每年每位職工只要交少量保費(fèi),發(fā)生意外后可一次性獲得若干賠償金.保險公司把企業(yè)的所有崗位共分為A、B、C三類工種,從事三類工種的人數(shù)分布比例如圖,根據(jù)歷史數(shù)據(jù)統(tǒng)計(jì)出三類工種的賠付頻率如下表(并以此估計(jì)賠付頻率).
工種類別ABC
賠付頻率$\frac{1}{1{0}^{5}}$$\frac{2}{1{0}^{5}}$$\frac{1}{1{0}^{4}}$
對于A、B、C三類工種職工每人每年保費(fèi)分別為a元,a元,b元,出險后的賠償金額分別為100萬元,100萬元,50萬元,保險公司在開展此項(xiàng)業(yè)務(wù)過程中的固定支出為每年10萬元.
(Ⅰ)若保險公司要求利潤的期望不低于保費(fèi)的20%,試確定保費(fèi)a、b所要滿足的條件;
(Ⅱ)現(xiàn)有如下兩個方案供企業(yè)選擇;
方案1:企業(yè)不與保險公司合作,企業(yè)自行拿出與保險提供的等額的賠償金額賠付給出險職工;
方案2:企業(yè)與保險公司合作,企業(yè)負(fù)責(zé)職工保費(fèi)的60%,職工個人負(fù)責(zé)保費(fèi)的40%,出險后賠償金由保險公司賠付.
若企業(yè)選擇方案2的支出(不包括職工支出)低于選擇方案1的支出期望,求保費(fèi)a、b所要滿足的條件,并判斷企業(yè)是否可與保險公司合作.(若企業(yè)選擇方案2的支出低于選擇方案1的支出期望,且與(Ⅰ)中保險公司所提條件不矛盾,則企業(yè)可與保險公司合作.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某校開設(shè)A類選修課3門和B類選修課4門,一位同學(xué)從中任選3門,則兩類課程都有選的概率為( 。
A.$\frac{6}{7}$B.$\frac{5}{7}$C.$\frac{3}{7}$D.$\frac{1}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某印刷廠為了研究印刷單冊書籍的成本y(單位:元)與印刷冊數(shù)x(單位:千冊)之間的關(guān)系,在印制某種書籍時進(jìn)行了統(tǒng)計(jì),相關(guān)數(shù)據(jù)見下表:
印刷冊數(shù)x(千冊)23458
單冊成本y(元)3.22.421.91.7
根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲:${\hat y^{(1)}}=\frac{4}{x}+1.1$,方程乙:${\hat y^{(2)}}=\frac{6.4}{x^2}+1.6$.
(I)為了評價兩種模型的擬合效果,完成以下任務(wù).
①完成下表(計(jì)算結(jié)果精確到0.1);
印刷冊數(shù)x(千冊)23458
單冊成本y(元)3.22.421.91.7
模型甲估計(jì)值${\hat y_i}^{(1)}$2.42.11.6
殘差${\hat e_i}^{(1)}$0-0.10.1
模型乙估計(jì)值${\hat y_i}^{(2)}$2.321.9
殘差${\hat e_i}^{(2)}$0.100
②分別計(jì)算模型甲與模型乙的殘差平方和Q1及Q2,并比較Q1,Q2的大小,判斷哪個模型擬合效果更好.
(II)該書上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進(jìn)行二次印刷.根據(jù)市場調(diào)查,新需求量為8千冊(概率0.7)或16千冊(概率0.3),若印刷廠以每冊5元的價格將書籍出售給訂貨商,估計(jì)印刷廠二次印刷8千冊還是16千冊能獲得更多利潤?(按(1)中擬合效果較好的模型計(jì)算印刷單冊書的成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知變量x,y滿足約束條件$\left\{\begin{array}{l}y≤x\\ x+y≥1\\ y≥3x-6\end{array}\right.$,則x2+y2+2(x-y)的最小值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=x3+x.
(1)求函數(shù)g(x)=f(x)-4x的單調(diào)區(qū)間;
(2)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線l與坐標(biāo)軸圍成的三角形的面積;
(3)若函數(shù)F(x)=f(x)-ax2在(0,3]上遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)x>0,由不等式x+$\frac{1}{x}$>2,x+$\frac{4}{{x}^{2}}$≥3,x+$\frac{27}{{x}^{3}}$≥4,…,類比推廣到x+$\frac{a}{{x}^{n}}$≥n+1,則a=(  )
A.nnB.n2C.2nD.n

查看答案和解析>>

同步練習(xí)冊答案