5.定積分${∫}_{-1}^{1}$(2x+sinx)dx的值為0.

分析 根據(jù)定積分的計(jì)算法則計(jì)算即可

解答 解:方法一:由于被積函數(shù)2x+sinx為奇函數(shù),且上、下限關(guān)于原點(diǎn)對稱,故${∫}_{-1}^{1}$(2x+sinx)dx=0,
方法二:${∫}_{-1}^{1}$(2x+sinx)dx=(x2-cosx)|${\;}_{-1}^{1}$=(1-cos1)-(1-cos1)=0,
故答案為:0

點(diǎn)評 本題考查了定積分的計(jì)算,屬于基礎(chǔ)題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.某同學(xué)在一次研究性學(xué)習(xí)中發(fā)現(xiàn),以下五個(gè)式子的值都等于同一個(gè)常數(shù).
①cos211°+sin241°-cos11°sin41°;
②cos222°+sin252°-cos22°sin52°;
③cos230°+sin260°-cos30°sin60°;
④cos244°+sin244°-cos44°sin74°;
⑤cos255°+sin285°-cos55°sin85°.
將該同學(xué)的發(fā)現(xiàn)推廣三角恒等式為cos2α+sin2(α+30°)-cosαsin(α+30°)=$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若a>0,b>0,且a+b=4則下列不等式中恒成立的是(  )
A.a2+b2≥8B.ab≥4C.a2+b2≤8D.ab≤2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知集合$A=\left\{{\frac{π}{7},\frac{2π}{7},\frac{3π}{7},\frac{4π}{7},\frac{5π}{7},\frac{6π}{7}}\right\}$﹒
(1)若從集合A中任取一對角,求至少有一個(gè)角為鈍角的概率;
(2)記$\overrightarrow a=(1+cosθ,1+sinθ)$,求從集合A中任取一個(gè)角作為θ的值,且使得關(guān)于x的一元二次方程${x^2}-2|{\overrightarrow a}|x+5=0$有解的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若${(1-2x)^7}={a_0}+{a_1}x+{a_2}{x^2}+{a_3}{x^3}+$…$+{a_7}{x^7}$,則a0+a1+a2+…+a7=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.求函數(shù)y=$\frac{1}{\sqrt{1-lo{g}_{3}({2}^{x}-1)}}$的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.五個(gè)人圍坐在一張圓桌旁,每個(gè)人面前放著完全相同的硬幣,所有人同時(shí)翻轉(zhuǎn)自己的硬幣.若硬幣正面朝上,則這個(gè)人站起來; 若硬幣正面朝下,則這個(gè)人繼續(xù)坐著.那么,沒有相鄰的兩個(gè)人站起來的概率為$\frac{11}{32}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={0,1,2},B={y|y=2x,x∈A},則A∩B=(  )
A.{0,1,2}B.{1,2}C.{1,2,4}D.{1,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.若某三棱錐的三視圖如圖所示,其中俯視圖為直角梯形,則這個(gè)三棱錐四個(gè)面的面積的最大值是$\sqrt{5}$.

查看答案和解析>>

同步練習(xí)冊答案