已知中心在原點,焦點在x軸上的橢圓,離心率數(shù)學公式,且經(jīng)過拋物線x2=4y的焦點.
(1)求橢圓的標準方程;
(2)若過點B(0,-2)的直線l(斜率不等于零)與橢圓交于不同的兩點E,F(xiàn)(E在B,F(xiàn)之間),△OBE與△OBF面積之比為λ,求λ的取值范圍.

解:(1)由已知得F(0,1),設橢圓方程為(a>b>0),則b=1
∵橢圓的離心率為,∴,
∵a2=b2+c2,∴a2=2,c=1
∴橢圓方程為+y2=1;
(2)由題意知l的斜率存在且不為零,設l方程為y=mx-2(m≠0)①,代入+y2=1,
整理得(2m2+1)x2-8mx+6=0,由△>0得m2
設E(x1,y1),F(xiàn)(x2,y2),則x1+x2=,x1x2=
∵△OBE與△OBF面積之比為λ
,∴
∴x2=λx1
代入②得,消去x1
∵m2


且λ≠1
分析:(1)設橢圓的標準方程,根據(jù)離心率求得a和c的關(guān)系,根據(jù)經(jīng)過拋物線x2=4y的焦點求得b,從而可求橢圓的方程;(2)設直線l方程,與橢圓方程聯(lián)立消去y,根據(jù)判別式大于0確定m的范圍,將三角形面積之比轉(zhuǎn)化為,進而可得λ,m的關(guān)系式,由此即可確定λ的范圍.
點評:本題考查橢圓的標準方程,考查直線與橢圓的位置關(guān)系,考查韋達定理的運用,解題的關(guān)鍵是聯(lián)立方程,利用韋達定理進行求解.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知中心在原點,焦點在x軸上的雙曲線的一條漸近線為mx-y=0,若m在集合{1,2,3,4,5,6,7,8,9}中任意取一個值,使得雙曲線的離心率大于3的概率是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•大興區(qū)一模)已知中心在原點,焦點在x軸上的雙曲線的離心率為
3
2
,實軸長為4,則雙曲線的方程是
x2
4
-
y2
5 
=1
x2
4
-
y2
5 
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知中心在原點,焦點在x軸上的雙曲線C,過點P(2,
3
)且離心率為2,則雙曲線C的標準方程為
x2
3
-
y2
9
=1
x2
3
-
y2
9
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•合肥模擬)已知中心在原點,焦點在x軸上的雙曲線的一條漸近線的方程為y=
1
2
x
,則此雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知中心在原點,焦點在坐標軸上的雙曲線的一條漸近線方程為
3
x-y=0
,則該雙曲線的離心率為(  )

查看答案和解析>>

同步練習冊答案