精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓的左頂點為,焦距為2

1)求橢圓的標準方程;

2)過點的直線與橢圓的另一個交點為點,與圓的另一個交點為點,是否存在直線使得?若存在,求出直線的方程;若不存在,請說明理由.

【答案】1.(2)直線不存在.見解析

【解析】

1)據題意有,,則通過計算可得橢圓的標準方程;

2)可先假設直線存在,可設直線的斜率為,則直線.根據及圓的性質可知垂直平分.再根據點到直線的距離公式可得的關于的表達式,再解可得的關于的表達式.然后聯立直線與橢圓方程,消去整理可得一元二次方程,根據韋達定理有,.根據弦長公式可得的關于的另一個表達式.根據存在性則兩個表達式相等,如果值存在則直線存在;如果沒有值則直線不存在.

1)由題意,可知.則,

橢圓的標準方程為

2)由題意,假設存在直線使得,可設直線的斜率為

則直線

,即點為線段中點,

根據圓的性質,可知,且平分

根據題意畫圖如下:

中,

聯立直線與橢圓方程,可得:

,

消去,整理得

則△

,

,整理,得.很明顯矛盾,

故直線不存在.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某學校需要從甲、乙兩名學生中選一人參加數學競賽,抽取了近期兩人次數學考試的成績,統計結果如下表:

第一次

第二次

第三次

第四次

第五次

甲的成績(分)

乙的成績(分)

(1)若從甲、乙兩人中選出一人參加數學競賽,你認為選誰合適?請說明理由.

(2)若數學競賽分初賽和復賽,在初賽中有兩種答題方案:

方案一:每人從道備選題中任意抽出道,若答對,則可參加復賽,否則被淘汰.

方案二:每人從道備選題中任意抽出道,若至少答對其中道,則可參加復賽,否則被潤汰.

已知學生甲、乙都只會道備選題中的道,那么你推薦的選手選擇哪種答題方條進人復賽的可能性更大?并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,過橢圓右焦點的直線與橢圓交于兩點,當直線軸垂直時,.

1)求橢圓的標準方程;

2)當直線軸不垂直時,在軸上是否存在一點(異于點),使軸上任意點到直線,的距離均相等?若存在,求點坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐中,底面為矩形, , 的中點。

1)證明: 平面;

2)設, ,三棱錐的體積 ,求A到平面PBC的距離。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】公元2020年春,我國湖北武漢出現了新型冠狀病毒,人感染后會出現發(fā)熱、咳嗽、氣促和呼吸困難等,嚴重的可導致肺炎甚至危及生命.為了盡快遏制住病毒的傳播,我國科研人員,在研究新型冠狀病毒某種疫苗的過程中,利用小白鼠進行科學試驗.為了研究小白鼠連續(xù)接種疫苗后出現癥狀的情況,決定對小白鼠進行做接種試驗.該試驗的設計為:①對參加試驗的每只小白鼠每天接種一次;②連續(xù)接種三天為一個接種周期;③試驗共進行3個周期.已知每只小白鼠接種后當天出現癥狀的概率均為,假設每次接種后當天是否出現癥狀與上次接種無關.

1)若某只小白鼠出現癥狀即對其終止試驗,求一只小白鼠至多能參加一個接種周期試驗的概率;

2)若某只小白鼠在一個接種周期內出現2次或3癥狀,則在這個接種周期結束后,對其終止試驗.設一只小白鼠參加的接種周期為,求的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)求函數的極值;

(2)若, 是方程)的兩個不同的實數根,求證: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點P在拋物線上,且點P的橫坐標為2,以P為圓心,為半徑的圓(O為原點),與拋物線C的準線交于M,N兩點,且

(1)求拋物線C的方程;

(2)若拋物線的準線與y軸的交點為H.過拋物線焦點F的直線l與拋物線C交于AB,且,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】三國時代吳國數學家趙爽所注《周髀算經》中給出了勾股定理的絕妙證明,左上面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實,圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實以及黃實,并且利用(股勾)朱實黃實弦實,化簡得勾,設勾股中勾股比為,若向弦圖內隨機拋擲顆圖釘,則落在黃色圖形內的圖釘數大約為_______________.

查看答案和解析>>

同步練習冊答案