(本題滿(mǎn)分12分)
已知數(shù)列滿(mǎn)足,
(1)試判斷數(shù)列是否為等比數(shù)列,并說(shuō)明理由;
(2)設(shè),求數(shù)列的前項(xiàng)和;(3)設(shè),數(shù)列的前項(xiàng)和為.求證:對(duì)任意的,
(Ⅰ) 見(jiàn)解析  (Ⅱ)  (Ⅲ)見(jiàn)解析
(1),
,∴數(shù)列是首項(xiàng)為,公比為的等比數(shù)列.
(2)依(1)的結(jié)論有,即

.     
(3),又由(Ⅱ)有
.則
( ) = =( 1-)<
∴ 對(duì)任意的
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知{an}是
等比數(shù)列,a1=2,a3=18,{bn}是等差數(shù)列b1=2,b1+b2+b3+b4=a1+a2+a3>20
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)求數(shù)列{bn}的前n項(xiàng)和Sn;
(3)設(shè)Pn=b1+b4+b7+…+b3n2,Qn=b10+b12+b14+…+b2n+8,其中n="1," 2……,試比較Pn與Qn的大小并證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
等比數(shù)列{}的前n項(xiàng)和為,已知對(duì)任意的,點(diǎn),均在函數(shù)均為常數(shù))的圖像上。
(1)求r的值;
(11)當(dāng)b=2時(shí),記,證明:對(duì)任意的 ,不等式成立。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

數(shù)列中,且滿(mǎn)足
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)的解析式;
(Ⅲ)設(shè)計(jì)一個(gè)求的程序框圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列滿(mǎn)足,點(diǎn)在直線上,
(1)求證:數(shù)列是等差數(shù)列;(2)求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分14分)設(shè)函數(shù)f (x)滿(mǎn)足f (0) =1,且對(duì)任意,都有f (xy+1) = f (x) f (y)-f (y)-x+2.(I)      求f (x) 的解析式;(II)  若數(shù)列{an}滿(mǎn)足:an+1=3f (an)-1(nÎ N*),且a1=1,求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知關(guān)于x的方程x2-3xa=0和x2-3xb=0(ab)的四個(gè)根組成首項(xiàng)為的等差數(shù)列,求ab的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列的首項(xiàng),前項(xiàng)和為,且
(1)求數(shù)列的通項(xiàng);
(2)令,求函數(shù)處的導(dǎo)數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知數(shù)列滿(mǎn)足,試寫(xiě)出, 并求數(shù)列的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案