設(shè)f(x)=-x3+x2+2ax,若f(x)在(,+∞)上存在單調(diào)遞增區(qū)間,則a的取值范圍為________.

 

(-,+∞)

【解析】由f′(x)=-x2+x+2a=-(x-)2++2a,得當(dāng)x∈[,+∞)時(shí),f′(x)的最大值為f′()=+2a.令+2a>0,得a>-.

所以a>-時(shí),f(x)在(,+∞)上存在單調(diào)遞增區(qū)間.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(五)(解析版) 題型:解答題

如圖,已知四棱錐P—ABCD的底面為等腰梯形,AB∥CD,AC⊥BD,垂足為H,PH是四棱錐的高,E為AD的中點(diǎn).

(1)證明:PE⊥BC;

(2)若∠APB=∠ADB=60°,求直線PA與平面PEH所成角的正弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(三)(解析版) 題型:解答題

為保增長(zhǎng)、促發(fā)展,某地計(jì)劃投資甲、乙兩項(xiàng)目,市場(chǎng)調(diào)研得知,甲項(xiàng)目每投資百萬(wàn)元需要配套電能2萬(wàn)千瓦,可提供就業(yè)崗位24個(gè),增加GDP260萬(wàn)元;乙項(xiàng)目每項(xiàng)投資百萬(wàn)元需要配套電能4萬(wàn)千瓦,可提供就業(yè)崗位32個(gè),增加GDP200萬(wàn)元,已知該地為甲、乙兩項(xiàng)目最多可投資3 000萬(wàn)元,配套電能100萬(wàn)千瓦,并要求它們提供的就業(yè)崗位不少于800個(gè),如何安排甲、乙兩項(xiàng)目的投資額,增加的GDP最大?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(三)(解析版) 題型:選擇題

在數(shù)列{an}中,a1=1,an+1-an=n(n∈N*),則a100的值為(  )

A.5 050 B.5 051 C.4 950 D.4 951

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(一)(解析版) 題型:解答題

已知函數(shù)f(x)的圖象與函數(shù)h(x)=x++2的圖象關(guān)于點(diǎn)A(0,1)對(duì)稱.

(1)求f(x)的解析式;

(2)若g(x)=f(x)·x+ax,且g(x)在區(qū)間[0,2]上為減函數(shù),求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(一)(解析版) 題型:選擇題

已知函數(shù)f(x)=,若f(a)=,則a等于 (  )

A.-1或 B.

C.-1 D.1或-

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(一)(解析版) 題型:選擇題

已知集合A={y|y=2x,x∈R},則∁RA等于 (  )

A.∅ B.(-∞,0]

C.(0,+∞) D.R

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第四章平面向量、數(shù)系擴(kuò)充與復(fù)數(shù)引入(解析版) 題型:選擇題

(2013·大綱版全國(guó)卷)已知向量m=,n=,若(m+n)⊥(m-n),則λ=(  )

A.-4 B.-3 C.-2 D.-1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評(píng)估檢測(cè) 第六章 不等式、推理與證明(解析版) 題型:選擇題

設(shè)x,y滿足約束條件若目標(biāo)函數(shù)z=ax+by(a>0,b>0)的最大值為12,則+的最小值為(  )

A. B. C.1 D.2

 

查看答案和解析>>

同步練習(xí)冊(cè)答案