求極限
lim
x→0
(1-cosx)[x-ln(1+tanx)]
sin4x
考點(diǎn):極限及其運(yùn)算
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:利用洛比達(dá)法則求解.
解答: 解:∵1-cosx~
1
2
x2,sin4x~x4;
lim
x→0
(1-cosx)[x-ln(1+tanx)]
sin4x

=
lim
x→0
x-ln(1+tanx)
2x2

=
lim
x→0
1-
sec2x
1+tanx
4x

=
lim
x→0
sec2x-2sec2xtanx
4
=
1
4
點(diǎn)評:本題考查了洛比達(dá)法則的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=b+(1-2a)x+x2-x3
(I)討論f(x)在其定義域上的單調(diào)性;
(II)設(shè)曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=4x-1,求函數(shù)f(x)在定義域上的極小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,點(diǎn)D是BC中點(diǎn),若∠A=60°,
AB
AC
=
1
2
,則|
AD
|的最小值是(  )
A、
3
2
B、
2
2
C、
3
4
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某小微企業(yè)日均用工人數(shù)a(人)與日營業(yè)利潤f(x)(元)、日人均用工成本x(元)之間的函數(shù)關(guān)系為,f(x)=-
1
3
x3+5x2+30ax-500(x≥0).
(1)若日均用工人數(shù)a=20,求日營業(yè)利潤f(x)的最大值;
(2)由于政府的減稅、降費(fèi)等一系列惠及小微企業(yè)政策的扶持,該企業(yè)的日人均用工成本x的值在區(qū)間[10,20]內(nèi),求該企業(yè)在確保日營業(yè)利潤f(x)不低于24000元的情況下,該企業(yè)平均每天至少可供多少人就業(yè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y1=a•x2,y2=c•2x,y3=b•x3,則由表中數(shù)據(jù)確定f(x),g(x),h(x)依次對應(yīng)( 。
xf(x)g(x)h(x)
120.20.2
550253.2
10200200102.4
A、y1,y2,y3
B、y2,y1,y3
C、y3,y2,y1
D、y1,y3,y2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=2,an+1=λann+1+(2-λ)2n(n∈N*),其中λ>0.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(x-
π
3
)sin(x+
π
3
),g(x)=
3
2
sin2x+
1
4

(1)求函數(shù)f(x)的最小正周期;
(2)求函數(shù)h(x)=f(x)+g(x)的最小值,并求使h(x)取得最小值時x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=max{sinx,cosx}的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α,β是兩個不同的平面,下列條件中可以推出α∥β 是( 。
A、存在一條直線a,a∥α,a⊥β
B、存在一個平面γ,γ⊥α,γ⊥β
C、存在兩條平行直線a,b,a?α,b?β,a∥β,b∥α;
D、存在兩條異面直線a,b,a?α,b?β,a∥β,b∥α

查看答案和解析>>

同步練習(xí)冊答案