【題目】某城市收集并整理了該市20191月份至10月份各月最低氣溫與最高氣溫(單位:)的數(shù)據(jù),繪制了下面的折線(xiàn)圖.

已知該城市各月的最低氣溫與最高氣溫具有較好的線(xiàn)性關(guān)系,則根據(jù)折線(xiàn)圖,下列結(jié)論正確的是

A.最低氣溫與最高氣溫為正相關(guān)B.10月的最高氣溫不低于5月的最高氣溫

C.月溫差(最高氣溫減最低氣溫)的最大值出現(xiàn)在1D.最低氣溫低于0 的月份有4個(gè)

【答案】ABC

【解析】

根據(jù)折線(xiàn)圖逐個(gè)選項(xiàng)分析即可.

對(duì)A,由圖可知, 最低氣溫與最高氣溫走勢(shì)基本相同,故最低氣溫與最高氣溫為正相關(guān).故A正確.

對(duì)B, 10月的最高氣溫超過(guò), 5月的最高氣溫低于.故B正確.

對(duì)C,1月的月溫差最大,超過(guò),故C正確.

對(duì)D,僅1,2,4月的的最低溫低于,故D錯(cuò)誤.

故選:ABC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(I)討論函數(shù)的單調(diào)性;

(II)設(shè).如果對(duì)任意,,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知直線(xiàn),拋物線(xiàn)).

(1)若直線(xiàn)過(guò)拋物線(xiàn)的焦點(diǎn),求拋物線(xiàn)的方程;

(2)已知拋物線(xiàn)上存在關(guān)于直線(xiàn)對(duì)稱(chēng)的相異兩點(diǎn)

①求證:線(xiàn)段PQ的中點(diǎn)坐標(biāo)為

②求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓,直線(xiàn).軸交于兩點(diǎn),是圓上不同于的一動(dòng)點(diǎn),所在直線(xiàn)分別與交于.

(1)當(dāng)時(shí),求以為直徑的圓的方程;

2)證明:以為直徑的圓截軸所得弦長(zhǎng)為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】,設(shè)其定義域上的區(qū)間.

1)判斷該函數(shù)的奇偶性,并證明;

2)當(dāng)時(shí),判斷函數(shù)在區(qū)間)上的單調(diào)性,并證明;

3)當(dāng)時(shí),若存在區(qū)間),使函數(shù)在該區(qū)間上的值域?yàn)?/span>,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行四邊形中,,,過(guò)點(diǎn)作的垂線(xiàn),交的延長(zhǎng)線(xiàn)于點(diǎn).連結(jié),交于點(diǎn),如圖1,將沿折起,使得點(diǎn)到達(dá)點(diǎn)的位置,如圖2.

(1)證明:平面平面

(2)若的中點(diǎn),的中點(diǎn),且平面平面,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線(xiàn)

(1)求曲線(xiàn)在點(diǎn)處的切線(xiàn)方程;(2)過(guò)點(diǎn)作直線(xiàn)與曲線(xiàn)交于兩點(diǎn),求線(xiàn)段的中點(diǎn)的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解關(guān)于的不等式.

查看答案和解析>>

同步練習(xí)冊(cè)答案