分析 (1)求解一元二次不等式化簡A,然后分B為∅和不是∅分類求解,當(dāng)B非空時,得到∁UB={x|x≤2k或x≥k+1},把A⊆∁UB轉(zhuǎn)化為不等式組$\left\{\begin{array}{l}{k<1}\\{2k≥1}\end{array}\right.$或$\left\{\begin{array}{l}{k<1}\\{k+1≤3}\end{array}\right.$求解k的范圍;
(2)求出∁UA,把(∁UA)∩B≠∅轉(zhuǎn)化為關(guān)于k的不等式組,求解不等式組得答案.
解答 解:全集U=R,集合A={x|x2-4x+3≥0}={x|x≤1或x≥3},B={x|2k<x<k+1}.
(1)當(dāng)2k≥k+1,即k≥1時,B=∅,∁UB=R,滿足A⊆∁UB;
當(dāng)2k<k+1,即k<1時,∁UB={x|x≤2k或x≥k+1},
要使A⊆∁UB,則$\left\{\begin{array}{l}{k<1}\\{2k≥1}\end{array}\right.$或$\left\{\begin{array}{l}{k<1}\\{k+1≤3}\end{array}\right.$,解得k<1.
綜上,滿足A⊆∁UB的實(shí)數(shù)k的取值范圍為R;
(2)∁UA={x|1<x<3},要使(∁UA)∩B≠∅,則
$\left\{\begin{array}{l}{k<1}\\{2k<3}\\{k+1>1}\end{array}\right.$,解得0<k<1.
∴使(∁UA)∩B≠∅的實(shí)數(shù)k的取值范圍為(0,1).
點(diǎn)評 本題考查交、并、補(bǔ)集的混合運(yùn)算,考查了集合的包含關(guān)系判斷及應(yīng)用,體現(xiàn)了分類討論的數(shù)學(xué)思想方法,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若-3≤m<n,則f(m)<f(n) | B. | 若m<n≤0,則f(m)<f(n) | ||
C. | 若f(m)<f(n),則m2<n2 | D. | 若f(m)<f(n),則m3<n3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 奇函數(shù)也是偶函數(shù) | B. | 偶函數(shù) | ||
C. | 既非奇函數(shù)也非偶函數(shù) | D. | 奇函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | $\sqrt{6}$ | D. | 2$\sqrt{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2$\sqrt{3}$ | B. | 3$\sqrt{2}$ | C. | 4 | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com