【題目】以A表示值域為R的函數(shù)組成的集合,B表示具有如下性質的函數(shù)組成的集合:對于函數(shù),存在一個正數(shù)M,使得函數(shù)的值域包含于區(qū)間[-M,M]。例如,當, 時, ,現(xiàn)有如下命題:
①設函數(shù)的定義域為D,則“”的充要條件是“”;
②若函數(shù),則有最大值和最小值;
③若函數(shù), 的定義域相同,且, ,則
④若函數(shù),則有最大值且,
其中的真命題有_____________。(寫出所有真命題的序號)
【答案】①③④
【解析】對于①,若f(x)∈A,則f(x)的值域為R,于是,對任意的b∈R,一定存在a∈D,使得f(a)=b,故①正確;
對于②,取函數(shù)f(x)=x(﹣1<x<1),其值域為(﹣1,1),于是,存在M=1,使得f(x)的值域包含于[﹣M,M]=[﹣1,1],但此時f(x)沒有最大值和最小值,故②錯誤;
對于③,當f(x)∈A時,由①可知,對任意的b∈R,存在a∈D,使得f(a)=b,
∴當g(x)∈B時,對于函數(shù)f(x)+g(x),如果存在一個正數(shù)M,使得f(x)+g(x)的值域包含于[﹣M,M],那么對于該區(qū)間外的某一個b0∈R,一定存在一個a0∈D,使得f(a0)=b﹣g(a0),即f(a0)+g(a0)=b0[﹣M,M],故③正確;
此時f(x)= (x>﹣2),易知f(x)∈[﹣ , ],∴存在正數(shù)M=,使得f(x)∈[﹣M,M],故④正確;
故答案為:①③④。
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R的函數(shù)是偶函數(shù),且滿足上的解析式為,過點作斜率為k的直線l,若直線l與函數(shù)的圖象至少有4個公共點,則實數(shù)k的取值范圍是
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】【2018吉林長春高三下學期二模】為了打好脫貧攻堅戰(zhàn),某貧困縣農科院針對玉米種植情況進行調研,力爭有效的改良玉米品種,為農民提供技術支.現(xiàn)對已選出的一組玉米的莖高進行統(tǒng)計,獲得莖葉圖如下圖(單位:厘米),設莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.
(I)完成列聯(lián)表,并判斷是否可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關?
(II)為了改良玉米品種,現(xiàn)采用分層抽樣的方法從抗倒伏的玉米中抽出5株,再從這5株玉米中選取2株進行雜交試驗,選取的植株均為矮莖的概率是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某縣政府為了引導居民合理用水,決定全面實施階梯水價,階梯水價原則上以住宅(一套住宅為一戶)的月用水量為基準定價:若用水量不超過12噸時,按4元/噸計算水費;若用水量超過12噸且不超過14噸時,超過12噸部分按6.60元/噸計算水費;若用水量超過14噸時,超過14噸部分按7.80元/噸計算水費.為了了解全市居民月用水量的分布情況,通過抽樣,獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照,,…,分成8組,制成了如圖1所示的頻率分布直方圖.
(圖1) (圖2)
(Ⅰ)通過頻率分布直方圖,估計該市居民每月的用水量的平均數(shù)和中位數(shù)(精確到0.01);
(Ⅱ)求用戶用水費用(元)關于月用水量(噸)的函數(shù)關系式;
(Ⅲ)如圖2是該縣居民李某2017年1~6月份的月用水費(元)與月份的散點圖,其擬合的線性回歸方程是.若李某2017年1~7月份水費總支出為294.6元,試估計李某7月份的用水噸數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某高校在2017年的自主招生考試成績中隨機抽取100名學生的筆試成績,按成績分組,得到的頻率分布表如下左圖所示。
(1)請先求出頻率分布表中①、②位置相應數(shù)據(jù),再在答題紙上完成下列頻率分布直方圖;
(2)為了能選拔出最優(yōu)秀的學生,高校決定在筆試成績高的第3、4、5組中用分層抽樣抽取6名學生進入第二輪面試,求第3、4、5組每組各抽取多少名學生進入第二輪面試?
(3)在(2)的前提下,學校決定在6名學生中隨機抽取2名學生接受A教官進行面試,求:第4組至少有一名學生被考官A面試的概率?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)判斷函數(shù)在區(qū)間上的單調性;
(Ⅱ)若函數(shù)在區(qū)間上滿足恒成立,求實數(shù)a的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2sinxcos(x-).
(Ⅰ)求函數(shù)f(x)的最小正周期.
(Ⅱ)當x∈[0, ]時,求函數(shù)f(x)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的離心率為,且上焦點為,過的動直線與橢圓相交于、兩點.設點,記、的斜率分別為和.
(1)求橢圓的方程;
(2)如果直線的斜率等于,求的值;
(3)探索是否為定值?如果是,求出該定值;如果不是,求出的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com