【題目】設(shè)定義在區(qū)間上的函數(shù)的圖象為, 、,且為圖象上的任意一點, 為坐標原點,當實數(shù)滿足時,記向量,若恒成立,則稱函數(shù)在區(qū)間上可在標準下線性近似,其中是一個確定的正數(shù).

(1)設(shè)函數(shù)在區(qū)間上可在標準下線性近似,求的取值范圍;

(2)已知函數(shù)的反函數(shù)為,函數(shù),( ),點、,記直線的斜率為,若,問:是否存在,使成立?若存在,求的取值范圍;若不存在,請說明理由.

【答案】(1);(2)見解析.

【解析】試題分析:

(1)利用標準下線性近似的定義得到恒成立問題,結(jié)合題意求解 的取值范圍即可;

(2)利用題意構(gòu)造函數(shù) ,結(jié)合函數(shù)零點存在定理證得 是存在的,然后結(jié)合導(dǎo)函數(shù)與原函數(shù)的關(guān)系求解取值范圍即可.

試題解析:

(1)由

的橫坐標相同。

對于區(qū)間上的函數(shù), ,

則有

,再由恒成立,可得.故k的取值范圍為

(2)由題意知, .則

.則

當t<0時, , 單調(diào)遞減;當t>0時, , 單調(diào)遞增.

故當t≠0時, 0,即

從而

所以.

由零點存在性定理可得:存在,使得

,所以單調(diào)遞增,故存在唯一的,使得.

.故當且僅當時,

綜上所述,存在,使成立,且的取值范圍為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知P為△ABC內(nèi)一點,且滿足 ,記△ABP,△BCP,△ACP的面積依次為S1 , S2 , S3 , 則S1:S2:S3等于(
A.1:2:3
B.1:4:9
C.2:3:1
D.3:1:2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(12分)在ABC中,角A,B,C所對的邊分別為a,b,c,已知cosC+(cosA﹣sinA)cosB=0.

(1)求角B的大; (2)若a+c=1,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)(其中為自然對數(shù)的底數(shù))

(1)設(shè)過點的直線與曲線相切于點,求的值;

(2)函數(shù)的的導(dǎo)函數(shù)為,若上恰有兩個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知焦點在軸上的橢圓的中心是原點,離心率為雙曲線離心率的一半,直線被橢圓截得的線段長為.直線 軸交于點,與橢圓交于兩個相異點,且.

(1)求橢圓的方程;

(2)是否存在實數(shù),使?若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}是公差為2的等差數(shù)列,且a1 , a4 , a13成等比數(shù)列,數(shù)列{ }是首項為1,公比為3的等比數(shù)列.
(1)求數(shù)列{an}、{bn}的通項公式;
(2)設(shè)數(shù)列{an+bn}的前n項和Rn , 若不等式 ≤λ3n+n+3對n∈N*恒成立,求λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣2x|x﹣a|(其中a∈R).
(1)當a=1時,求函數(shù)f(x)的值域;
(2)若y=f(x)在[0,2]上的最小值為﹣1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地隨著經(jīng)濟的發(fā)展,居民收入逐年增長,下表是該地一建設(shè)銀行連續(xù)五年的儲蓄存款(年底余額),如下表1:

年份x

2011

2012

2013

2014

2015

儲蓄存款y(千億元)

5

6

7

8

10

為了研究計算的方便,工作人員將上表的數(shù)據(jù)進行了處理, 得到下表2:

時間代號t

1

2

3

4

5

z

0

1

2

3

5

(Ⅰ)求z關(guān)于t的線性回歸方程;

(Ⅱ)通過()中的方程,求出y關(guān)于x的回歸方程;

(Ⅲ)用所求回歸方程預(yù)測到2020年年底,該地儲蓄存款額可達多少?

(附:對于線性回歸方程,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)擬建立一個藝術(shù)博物館,采取競標的方式從多家建筑公司選取一家建筑公司,經(jīng)過層層篩選,甲、乙兩家建筑公司進入最后的招標.現(xiàn)從建筑設(shè)計院聘請專家設(shè)計了一個招標方案:兩家公司從個招標問題中隨機抽取個問題,已知這個招標問題中,甲公司可正確回答其中的道題目,而乙公司能正確回答毎道題目的概率均為,甲、乙兩家公司對每題的回答都是相互獨立,互不影響的.

(1)求甲、乙兩家公司共答對道題目的概率;

(2)請從期望和方差的角度分析,甲、乙兩家哪家公司競標成功的可能性更大?

查看答案和解析>>

同步練習(xí)冊答案