【題目】某縣一中計(jì)劃把一塊邊長為20米的等邊三角形ABC的邊角地辟為植物新品種實(shí)驗(yàn)基地,圖中DE需把基地分成面積相等的兩部分,D在AB上,E在AC上.
(1)設(shè)AD=x(x≥10),ED=y,試用x表示y的函數(shù)關(guān)系式;
(2)如果DE是灌溉輸水管道的位置,為了節(jié)約,則希望它最短,DE的位置應(yīng)該在哪里?如果DE是參觀線路,則希望它最長,DE的位置又應(yīng)該在哪里?說明理由.
【答案】
(1)解:∵△ABC的邊長是20米,D在AB上,則10≤x≤20,
S△ADE= S△ABC,
∴ xAEsin60°= (20)2,
故AE= ,
在三角形ADE中,由余弦定理得:
y= ,(10≤x≤20);
(2)解:若DE作為輸水管道,則需求y的最小值,
∴y= ≥ =10 ,
當(dāng)且僅當(dāng)x2= 即x=10 時(shí)“=”成立.
【解析】(1)三角形ADE中的∠A=60°,由余弦定理得y,x,AE三者的關(guān)系求出函數(shù)的解析式即可;(2)根據(jù)基本不等式的性質(zhì)求出函數(shù)的最小值即可.
【考點(diǎn)精析】掌握基本不等式是解答本題的根本,需要知道基本不等式:,(當(dāng)且僅當(dāng)時(shí)取到等號(hào));變形公式:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x|+|x+1|.
(1)解關(guān)于x的不等式f(x)>3;
(2)若x∈R,使得m2+3m+2f(x)≥0成立,試求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的幾何體中,四邊形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,∠DAB=60°,AD=2,AM=1,E為AB的中點(diǎn).
(Ⅰ)求證:AN∥平面MEC;
(Ⅱ)在線段AM上是否存在點(diǎn)P,使二面角P﹣EC﹣D的大小為 ?若存在,求出AP的長h;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將參加冬季越野跑的600名選手編號(hào)為:001,002,…,600.采用系統(tǒng)抽樣方法抽取一個(gè)容量為50的樣本,把編號(hào)分50組后,在第一組的001到012這12個(gè)編號(hào)中隨機(jī)抽得的號(hào)碼為004.這600名選手分穿著三種顏色的衣服,從001到301穿紅色衣服,從302到496穿白色衣服,從497到600穿黃色衣服.則抽到穿白色衣服的選手人數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程 為參數(shù)),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求圓C的極坐標(biāo)方程;
(2)直線l的極坐標(biāo)方程是 ,射線 與圓C的交點(diǎn)為O,P,與直線l的交點(diǎn)為Q,求|OP||OQ|的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四數(shù)a1 , a2 , a3 , a4依次成等比數(shù)列,且公比q不為1.將此數(shù)列刪去一個(gè)數(shù)后得到的數(shù)列(按原來的順序)是等差數(shù)列,則正數(shù)q的取值集合是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)對(duì)x∈R恒成立,當(dāng)x∈[0,1]時(shí),f(x)=2x , 則 =( )
A.
B.
C.
D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足[2﹣(﹣1)n]an+[2+(﹣1)n]an+1=1+(﹣1)n×3n,則a25﹣a1= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)求該函數(shù)的最小正周期;
(2)求該函數(shù)的單調(diào)遞減區(qū)間;
(3)用“五點(diǎn)法”作出該函數(shù)在長度為一個(gè)周期的閉區(qū)間上的簡圖.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com