【題目】設(shè)是圓上的動(dòng)點(diǎn),點(diǎn)軸上的投影,且.

1)當(dāng)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程;

2)求過點(diǎn)(1,0),傾斜角為的直線被所截線段的長度.

【答案】12

【解析】

1)設(shè)的坐標(biāo)為,的坐標(biāo)為.,可得,可列出,坐標(biāo)關(guān)系式為,即可得到的軌跡的方程.

2)設(shè)直線方程為:,代入橢圓方程,由韋達(dá)定理和弦長公式:,即可求得直線被C所截線段的長度.

1)設(shè)的坐標(biāo)為,的坐標(biāo)為.

,可得,

的坐標(biāo)為,是圓上的動(dòng)點(diǎn)

┄①

,坐標(biāo)關(guān)系式為: ┄②代入①得:

整理可得的軌跡的方程:

2)求過點(diǎn),傾斜角為的直線方程為:

設(shè)直線與軌跡的交點(diǎn)為

將直線方程與軌跡方程聯(lián)立方程組,消掉

:

整理可得:

根據(jù)韋達(dá)定理得:

∴線段AB的長度為:

所以線段AB的長度:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若集合具有以下性質(zhì):(1;(2)若,,則,且當(dāng)時(shí),,則稱集合閉集”.

1)試判斷集合是否為閉集,請說明理由;

2)設(shè)集合閉集,求證:若,,則;

3)若集合是一個(gè)閉集,試判斷命題,,則的真假,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在直角梯形中,,分別是上的點(diǎn),,且(如圖①).將四邊形沿折起,連接(如圖②).在折起的過程中,下列說法中錯(cuò)誤的個(gè)數(shù)是( )

平面

四點(diǎn)不可能共面;

③若,則平面平面;

④平面與平面可能垂直.

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱錐中,底面,,的中點(diǎn).

(1)求證:;

(2)若二面角的大小為,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線恒過定點(diǎn),圓經(jīng)過點(diǎn)和點(diǎn),且圓心在直線.

1)求定點(diǎn)的坐標(biāo)與圓的方程;

2)已知點(diǎn)為圓直徑的一個(gè)端點(diǎn),若另一個(gè)端點(diǎn)為點(diǎn),問:在軸上是否存在一點(diǎn),使得為直角三角形,若存在,求出的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD底面為正方形,PD⊥平面ABCD,PD=AD,點(diǎn)M為線段PA上任意一點(diǎn)(不含端點(diǎn)),點(diǎn)N在線段BD上,且PM=DN.

1)求證:直線MN∥平面PCD.

2)若點(diǎn)M為線段PA的中點(diǎn),求直線PB與平面AMN所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】黨的十九大報(bào)告中多次出現(xiàn)的“綠色”“低碳”“節(jié)約”等詞語,正在走入百姓生活,綠色出行的理念已深入人心,騎自行車或步行漸漸成為市民的一種出行習(xí)慣.某市環(huán)保機(jī)構(gòu)隨機(jī)抽查統(tǒng)計(jì)了該市1800名成年市民某月騎車次數(shù)在各區(qū)間的人數(shù),統(tǒng)計(jì)如下表:

次數(shù)

年齡

[0,10)

[10,20)

[20,30)

[30,40)

[40,50)

[50,60)

18歲至31歲

8

12

20

60

140

150

32歲至44歲

12

28

20

140

60

150

45歲至59歲

25

50

80

100

225

450

60歲及以上

25

10

10

19

4

2

聯(lián)合國世界衛(wèi)生組織于2013年確定新的年齡分段:44歲及以下為青年人,45歲至59歲為中年人,60歲及以上為老人.

(1)若從被抽查的該月騎車次數(shù)在的老年人中隨機(jī)選出兩名幸運(yùn)者給予獎(jiǎng)勵(lì),求其中一名幸運(yùn)者該月騎車次數(shù)在之間,另一名幸運(yùn)者該月騎車次數(shù)在之間概率;

(2)若月騎車次數(shù)不少于30次者被稱為“騎行愛好者”,將上面提供的數(shù)據(jù)進(jìn)行統(tǒng)計(jì)后,把答卷中的列聯(lián)表補(bǔ)充完整,并計(jì)算說明能否在犯錯(cuò)誤不超過0.001的前提下認(rèn)為“騎行愛好者”與“青年人”有關(guān)?

參考數(shù)據(jù):

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),及圓

1)求過點(diǎn)的圓的切線方程;

2)若過點(diǎn)的直線與圓相交,截得的弦長為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

Ⅰ)若的圖像與直線相切,求

Ⅱ)若且函數(shù)的零點(diǎn)為,

設(shè)函數(shù)試討論函數(shù)的零點(diǎn)個(gè)數(shù).(為自然常數(shù))

查看答案和解析>>

同步練習(xí)冊答案