17.已知tan(π+α)=2,求下列各式的值:
(1)$\frac{{2cos(\frac{π}{2}-α)+sin(\frac{π}{2}+α)}}{{sin(π+α)+3sin(\frac{3π}{2}+α)}}$;  
(2)$\frac{1}{{({sinα-3cosα})({cosα-sinα})}}$.

分析 (1)利用誘導(dǎo)公式以及同角三角函數(shù)基本關(guān)系式化簡表達(dá)式為正切函數(shù)的形式,代入求解即可.
(2)利用同角三角函數(shù)基本關(guān)系式化簡表達(dá)式為正切函數(shù)的形式,代入求解即可.

解答 解:(1)由已知得tanα=2.
∴$\frac{{2cos(\frac{π}{2}-α)+sin(\frac{π}{2}+α)}}{{sin(π+α)+3sin(\frac{3π}{2}+α)}}=\frac{2sinα+cosα}{-sinα-3cosα}=\frac{2tanα+1}{-tanα-3}=-1$.
(2)$\frac{1}{{({sinα-3cosα})({cosα-sinα})}}=\frac{{{{sin}^2}α+{{cos}^2}α}}{{4sinαcosα-3{{cos}^2}α-{{sin}^2}α}}$=$\frac{{{{tan}^2}α+1}}{{4tanα-3-{{tan}^2}α}}=5$

點評 本題考查誘導(dǎo)公式的應(yīng)用,同角三角函數(shù)基本關(guān)系式的應(yīng)用,三角函數(shù)化簡求值,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)為二次函數(shù),且f(x+1)+f(x-1)=2x2-4x.
(1)求f(x)的表達(dá)式;
(2)當(dāng)x∈[0,3]時,畫出函數(shù)f(x)的圖象,并指出其值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知(1+3x)n的展開式中,末三項的二項式系數(shù)的和等于121,求展開式中二項式系數(shù)的最大的項及所有項的系數(shù)之和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}$)+1
(1)求它的振幅、最小正周期、初相;
(2)畫出函數(shù)y=f(x)在[-$\frac{π}{2},\frac{π}{2}}$]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知三點A(1,0),B(0,$\sqrt{3}$),C(2,$\sqrt{3}$),求△ABC外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.某住宅小區(qū)有1500名戶,各戶每月的用電量近似服從正態(tài)分布N(200,100),則月用電量在220度以上的戶數(shù)估計約為( 。▍⒖紨(shù)據(jù):若隨機(jī)變量X服從正態(tài)分布N(μ,σ2),則P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974)
A.17B.23C.34D.46

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.角A是△ABC的一個內(nèi)角,若函數(shù)y=cos(2x+A)的圖象的一個對稱中心為($\frac{π}{3}$,0),則A=$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.從兩名老師和四名學(xué)生中選出四人排成一排照相,其中老師必須入選且相鄰,共有排列方法( 。
A.36種B.72種C.90種D.144種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)一個班中有$\frac{1}{3}$的女生,$\frac{1}{5}$的三好學(xué)生,而三好學(xué)生中女生占$\frac{1}{3}$,若從此班級中任選一名代表參加夏令營活動,試問在已知沒有選上女生的條件下,選的是一位三好學(xué)生的概率是$\frac{1}{5}$.

查看答案和解析>>

同步練習(xí)冊答案