12.已知全集U={0,1,2,3,4},A={1,3},B={0,1,4},則(∁UA)∩B=(  )
A.{0,1,2,4}B.{2,3}C.{2,4}D.{0,4}

分析 先求出CUA,再求(CUA)∩B.

解答 解:∵U={0,1,2,3,4},A={1,3},
∴CUA={0,2,4},
∵B={0,1,4},
∴(CUA)∩B={0,4}.
故選D.

點評 本題考查集合的性質(zhì)和運算,解題時要注意運算法則的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.關(guān)于x的方程$({k-7}){x^2}+4lnx-\frac{1}{x^2}+k=0$有兩個不等實根,則實數(shù)k的取值范圍是(4,7).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.企業(yè)需為員工繳納社會保險,繳費標(biāo)準(zhǔn)是根據(jù)職工本人上一年度月平均工資(單位:元)的8%繳納,某企業(yè)員工甲在2010年至2016年各年中每月所繳納的養(yǎng)老保險數(shù)額y(單位:元)與年份序號t的統(tǒng)計如表:
 年份 20102011 2012 2013 2014 2015 2016 
 t 1 2 3 4 5 6 7
 y 270 330 390 450 490 540 610
(1)求y關(guān)于t的線性回歸方程$\widehat{y}$=$\widehat$t+$\widehat{a}$;
(2)按照這種變化趨勢,利用(1)中回歸方程,預(yù)測2017年該員工每月的平均工資(精確到0.1).
參考公式和數(shù)據(jù):$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{xy}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-b$\overline{x}$,$\sum_{i=1}^{7}$tiyi=13860,$\sum_{i=1}^{7}$ti2=140.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若${(x-\frac{1}{x})}^{n}$的展開式中只有第7項的二項式系數(shù)最大,則展開式中含x2項的系數(shù)是( 。
A.-462B.462C.792D.-792

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知點P($\sqrt{3}$,$\frac{1}{2}$)在橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上,F(xiàn)為右焦點,PF垂直于x軸,A,B,C,D為橢圓上四個動點,且AC,BD交于原點O.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),滿足$\frac{{{y}_{1}y}_{2}}{\overrightarrow{OA}•\overrightarrow{OB}}$=$\frac{1}{5}$,判斷kAB+kBC的值是否為定值,若是,求出此定值,并求出四邊形ABCD面積的最大值,否則請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=$\frac{lnx}{x}$,f′(x)為f(x)的導(dǎo)函數(shù),則f′(1)的值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐S-ABCD中,四邊形ABCD是菱形,∠BAD=60°,AC交BC于點O,△SBD是邊長為2的正三角形,SA=$\sqrt{3}$,E,F(xiàn)分別是CD,SB的中點.
(Ⅰ)求證:EF∥平面SAD;
(Ⅱ)求證:BD⊥平面SAC;
(Ⅲ)求直線AB與平面SBD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在三棱錐A-BCD中,頂點A在底面BCD上的射影O在棱BD上,AB=AD=$\sqrt{2}$,BC=BD=2,∠CBD=90°,E為CD的中點.
(Ⅰ)求證:AD⊥平面ABC;
(Ⅱ)求直線AC與平面ABE所成角的正弦值;
(Ⅲ)求二面角B-AE-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,已知矩形OABC中,OA=2,OC=1,OD=3,若P在△BCD中(包括邊界),且$\overrightarrow{OP}$=α$\overrightarrow{OC}$+$\frac{1}{2}$β$\overrightarrow{OA}$,則α+$\frac{3}{2}$β的最大值為( 。
A.$\frac{3}{2}$B.$\frac{5}{2}$C.$\frac{9}{2}$D.3

查看答案和解析>>

同步練習(xí)冊答案