分析 (1)利用已知條件列出不等式求解即可.
(2)利用二次函數(shù)的性質(zhì),通過(guò)配方求解函數(shù)的最值即可.
解答 解:(1)根據(jù)題意,
有$100(5x-\frac{3}{x}+1)≥1500$,
得5x2-14x-3≥0,得x≥3或$x≤-\frac{1}{5}$,
又1≤x≤10,得3≤x≤10.
(2)生產(chǎn)480千克該產(chǎn)品獲得的利潤(rùn)為$u=24000(5+\frac{1}{x}-\frac{3}{x^2})$,1≤x≤10,
記$f(x)=-\frac{3}{x^2}+\frac{1}{x}+5$,1≤x≤10,
則$f(x)=-3{(\frac{1}{x}-\frac{1}{6})^2}+\frac{1}{12}+5$
當(dāng)且僅當(dāng)x=6時(shí)取得最大值$\frac{61}{12}$,
則獲得的最大利潤(rùn)為$u=24000×\frac{61}{12}=122000$(元)
故該廠以6千克/小時(shí)的速度生產(chǎn),可獲得最大利潤(rùn)為122000元.
點(diǎn)評(píng) 本題考查函數(shù)的實(shí)際應(yīng)用,二次函數(shù)的性質(zhì),考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | l | C. | -l | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | i≤1009 | B. | i>1009 | C. | i≤1010 | D. | i>1010 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2017屆湖南長(zhǎng)沙長(zhǎng)郡中學(xué)高三上周測(cè)十二數(shù)學(xué)(理)試卷(解析版) 題型:填空題
若數(shù)列滿足,則稱數(shù)列為“差遞減”數(shù)列.若數(shù)列是“差遞減”數(shù)列,且其通項(xiàng)與其前項(xiàng)和()滿足(),則實(shí)數(shù)的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ?x0∈(0,+∞),lnx0≠2x0+1 | B. | ?x0∉(0,+∞),lnx0=2x0+1 | ||
C. | ?x∈(0,+∞),lnx≠2x+1 | D. | ?x∉(0,+∞),lnx≠2x+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com