參考公式: .其中">

【題目】為了調(diào)查喜歡旅游是否與性別有關(guān),調(diào)查人員就“是否喜歡旅游”這個(gè)問題,在火車站分別隨機(jī)調(diào)研了 名女性或 名男性,根據(jù)調(diào)研結(jié)果得到如圖所示的等高條形圖.

(1)完成下列 列聯(lián)表:

喜歡旅游

不喜歡旅游

估計(jì)

女性

男性

合計(jì)


(2)能否在犯錯(cuò)誤概率不超過 的前提下認(rèn)為“喜歡旅游與性別有關(guān)”.
附:

/td>

參考公式:
,其中

【答案】
(1)解:由等高條形圖得:

喜歡旅游的女性人數(shù)為 ,不喜歡旅游的女性人數(shù)為 ;喜歡旅游和不喜歡旅游的男性人數(shù)均為 .則對(duì)應(yīng)的 列聯(lián)表為:

喜歡旅游

不喜歡旅游

估計(jì)

女性

男性

合計(jì)


(2)解: 的觀測(cè)值 不能在犯錯(cuò)誤概率不超過 的前提下認(rèn)為“喜歡旅游與性別有關(guān)”

【解析】(1)根據(jù)題意結(jié)合所給的數(shù)據(jù)可得喜歡旅游的女性人數(shù)為35,不喜歡旅游的女性人數(shù)為15;喜歡旅游和不喜歡旅游的男性人數(shù)均為25由此即可求得列表內(nèi)的值。(2)結(jié)合(1)的結(jié)論計(jì)算可得K2 的觀測(cè)值,利用該值與標(biāo)準(zhǔn)值的大小關(guān)系可得出不能在犯錯(cuò)誤概率不超過0.025的前提下認(rèn)為“喜歡旅游與性別有關(guān)”即的結(jié)果。
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解用樣本的頻率分布估計(jì)總體分布的相關(guān)知識(shí),掌握樣本數(shù)據(jù)的頻率分布表和頻率分布直方圖,是通過各小組數(shù)據(jù)在樣本容量中所占比例大小來表示數(shù)據(jù)的分布規(guī)律,它可以讓我們更清楚的看到整個(gè)樣本數(shù)據(jù)的頻率分布情況,并由此估計(jì)總體的分布情況.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)集具有性質(zhì):對(duì)任意的 ,,使得成立.

Ⅰ)分別判斷數(shù)集是否具有性質(zhì),并說明理由;

Ⅱ)求證;

Ⅲ)若,求數(shù)集中所有元素的和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線C1 , C2的極坐標(biāo)方程分別為ρ=2cosθ, ,射線θ=φ, , 與曲線C1交于(不包括極點(diǎn)O)三點(diǎn)A,B,C.
(Ⅰ)求證:
(Ⅱ)當(dāng) 時(shí),求點(diǎn)B到曲線C2上的點(diǎn)的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,.

)證明:

)若,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在無窮數(shù)列中, ,對(duì)于任意,都有, .設(shè),記使得成立的n的最大值為

Ⅰ)設(shè)數(shù)列{an}1,3,5,7,,寫出b1,b2b3的值;

Ⅱ)若{an}為等比數(shù)列,且a2=2,求b1+b2+b3+…+b50的值;

Ⅲ)若{bn}為等差數(shù)列,求出所有可能的數(shù)列{an}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為梯形,CD∥AB,AB=2CD,AC交BD于O,銳角△PAD所在平面⊥底面ABCD,PA⊥BD,點(diǎn)Q在側(cè)棱PC上,且PQ=2QC.

(1)求證:PA∥平面QBD;
(2)求證BD⊥AD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一次國(guó)際學(xué)術(shù)會(huì)議上,來自四個(gè)國(guó)家的五位代表被安排坐在一張圓桌,為了使他們能夠自由交談,事先了解到的情況如下:
甲是中國(guó)人,還會(huì)說英語.
乙是法國(guó)人,還會(huì)說日語.
丙是英國(guó)人,還會(huì)說法語.
丁是日本人,還會(huì)說漢語.
戊是法國(guó)人,還會(huì)說德語.
則這五位代表的座位順序應(yīng)為( )
A.甲丙丁戊乙
B.甲丁丙乙戊
C.甲乙丙丁戊
D.甲丙戊乙丁

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)P(0,1)在圓C:x2+y2+2mx﹣2y+m2﹣4m+1=0內(nèi),若存在過點(diǎn)P的直線交圓C于A、B兩點(diǎn),且△PBC的面積是△PAC的面積的2倍,則實(shí)數(shù)m的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2eax
(Ⅰ)當(dāng)a<0時(shí),討論函數(shù)f(x)的單調(diào)性;
(Ⅱ)在(1)條件下,求函數(shù)f(x)在區(qū)間[0,1]上的最大值;
(Ⅲ)設(shè)函數(shù)g(x)=2ex ,求證:當(dāng)a=1,對(duì)x∈(0,1),g(x)﹣xf(x)>2恒成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案