試判斷,對任意的k∈Z,
tan(kπ-
π
3
)•tan(kπ+
π
3
)
cos(2kπ-
π
3
)•sin((2k+1)π+
π
3
)
是否恒為定值?若是,求出此定值;若不是,請說明理由.
考點(diǎn):運(yùn)用誘導(dǎo)公式化簡求值
專題:三角函數(shù)的求值
分析:由條件利用誘導(dǎo)公式化簡所給的三角函數(shù)式,可得結(jié)果.
解答: 解:對任意的k∈Z,
tan(kπ-
π
3
)•tan(kπ+
π
3
)
cos(2kπ-
π
3
)•sin((2k+1)π+
π
3
)
=
-tan
π
3
•tan
π
3
cos
π
3
•(-sin
π
3
)
=
-3
1
2
•(-
3
2
)
=4
3
,
顯然為定值.
點(diǎn)評:本題主要考查應(yīng)用誘導(dǎo)公式化簡三角函數(shù)式,要特別注意符號的選取,這是解題的易錯點(diǎn),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=2
1
2
,b=log2
1
3
,c=log
1
2
1
3
,則(  )
A、c>b>a
B、c>a>b
C、a>b>c
D、a>b>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某人在3時(shí)與5時(shí)之間,看見表的時(shí)針與分針重合,求此時(shí)的時(shí)刻.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,a20=a16+8,且a1,a3,a4成等比數(shù)列,則a2=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域?yàn)椋?2,2),函數(shù)g(x)=f(x-1)+f(3-2x),求函數(shù)g(x)的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2+bx+c(a、b、c∈R)的圖象如圖所示,它與x軸在原點(diǎn)處相切,且x軸與函數(shù)圖象所圍成的區(qū)域(圖中陰影部分)的面積為
1
12
,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知函數(shù)f(x)=ex-1-tx,?x0∈R,使f(x0)≤0,求實(shí)數(shù)t的取值范圍;
(2)證明:
b-a
b
<ln
b
a
b-a
a
,其中0<a<b;
(3)設(shè)[x]表示不超過x的最大整數(shù),證明:[ln(1+n)]≤[1+
1
2
+…+
1
n
]≤1+[lnn](n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A={x|(
1
2
x≤1},B={x|x2-6x+8≤0},則A∩B的補(bǔ)集等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求使函數(shù)y=-
3
2
cos(
1
2
x-
π
6
),x∈(-
π
2
,
2
)取得最大值、最小值時(shí)的自變量x的集合,并分別寫出其最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案