【題目】下面命題正確的是( )
A.“”是“”的 充 分不 必 要條件
B.命題“若,則”的 否 定 是“ 存 在,則”.
C.設(shè),則“且”是“”的必要而不充分條件
D.設(shè),則“”是“”的必要 不 充 分 條件
【答案】ABD
【解析】
選項A:先判斷由,能不能推出,再判斷由,能不能推出,最后判斷本選項是否正確;
選項B: 根據(jù)命題的否定的定義進(jìn)行判斷即可.
選項C:先判斷由且能不能推出,然后再判斷由能不能推出且,最后判斷本選項是否正確;
選項D:先判斷由能不能推出,再判斷由能不能推出,最后判斷本選項是否正確.
選項A:根據(jù)反比例函數(shù)的性質(zhì)可知:由,能推出,但是由,不能推出,例如當(dāng)時,符合,但是不符合,所以本選項是正確的;
選項B: 根據(jù)命題的否定的定義可知:命題“若,則”的 否 定 是“ 存 在,則”.所以本選項是正確的;
選項C:根據(jù)不等式的性質(zhì)可知:由且能推出,本選項是不正確的;
選項D: 因為可以等于零,所以由不能推出,再判斷由能不能推出,最后判斷本選項是否正確.
故選:ABD
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)到點(diǎn)的距離與點(diǎn)到直線的距離相等.
(1)求點(diǎn)的軌跡方程;
(2)設(shè)點(diǎn)的軌跡為曲線,過點(diǎn)且斜率為1的直線與曲線相交于不同的兩點(diǎn),,為坐標(biāo)原點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)甲、乙、丙三個羽毛球協(xié)會的運(yùn)動員人數(shù)分別為18,9,18,先采用分層抽樣的方法從這三個協(xié)會中抽取5名運(yùn)動員參加比賽.
(1)求應(yīng)從這三個協(xié)會中分別抽取的運(yùn)動員人數(shù);
(2)將抽取的5名運(yùn)動員進(jìn)行編號,編號分別為,從這5名運(yùn)動員中隨機(jī)抽取2名參加雙打比賽. 設(shè)“編號為的兩名運(yùn)動員至少有一人被抽到” 為事件A,求事件A發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知曲線y=5,求:
(1)曲線上與直線y=2x-4平行的切線方程.
(2)求過點(diǎn)P(0,5),且與曲線相切的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,曲線由部分橢圓:和部分拋物線:連接而成,與的公共點(diǎn)為,,其中所在橢圓的離心率為.
(Ⅰ)求,的值;
(Ⅱ)過點(diǎn)的直線與,分別交于點(diǎn),(,,,中任意兩點(diǎn)均不重合),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠有甲,乙兩個車間生產(chǎn)同一種產(chǎn)品,,甲車間有工人人,乙車間有工人人,為比較兩個車間工人的生產(chǎn)效率,采用分層抽樣的方法抽取工人,甲車間抽取的工人記作第一組,乙車間抽取的工人記作第二組,并對他們中每位工人生產(chǎn)完成的一件產(chǎn)品的事件(單位:)進(jìn)行統(tǒng)計,按照進(jìn)行分組,得到下列統(tǒng)計圖.
分別估算兩個車間工人中,生產(chǎn)一件產(chǎn)品時間少于的人數(shù)
分別估計兩個車間工人生產(chǎn)一件產(chǎn)品時間的平均值,并推測車哪個車間工人的生產(chǎn)效率更高?
從第一組生產(chǎn)時間少于的工人中隨機(jī)抽取人,記抽取的生產(chǎn)時間少于的工人人數(shù)為隨機(jī)變量,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的傾斜角為,且經(jīng)過點(diǎn).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線,從原點(diǎn)O作射線交于點(diǎn)M,點(diǎn)N為射線OM上的點(diǎn),滿足,記點(diǎn)N的軌跡為曲線C.
(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線C交于P,Q兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰梯形中,,,,為中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置(平面).
(Ⅰ)證明:;
(Ⅱ)若直線與平面所成的角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】今年學(xué)雷鋒日,某中學(xué)計劃從高中三個年級選派4名教師和若干名學(xué)生去當(dāng)學(xué)雷鋒文明交通宣傳志愿者,用分層抽樣法從高中三個年級的相關(guān)人員中抽取若干人組成文明交通宣傳小組,學(xué)生的選派情況如下:
年級 | 相關(guān)人數(shù) | 抽取人數(shù) |
高一 | 99 | |
高二 | 27 | |
高三 | 18 | 2 |
(Ⅰ)求,的值;
(Ⅱ)若從選派的高一、高二、高三年級學(xué)生中抽取3人參加文明交通宣傳,求他們中恰好有1人是高三年級學(xué)生的概率;
(Ⅲ)若4名教師可去、、三個學(xué)雷鋒文明交通宣傳點(diǎn)進(jìn)行文明交通宣傳,其中每名教師去、、三個文明交通宣傳點(diǎn)是等可能的,且各位教師的選擇相互獨(dú)立.記到文明交通宣傳點(diǎn)的人數(shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com