已知數(shù)列是首項(xiàng)和公比均為的等比數(shù)列,設(shè).
(1)求證數(shù)列是等差數(shù)列;
(2)求數(shù)列的前n項(xiàng)和.
(1)見解析(2)
解析試題分析:
(1)利用為等比數(shù)列且已知公比和首項(xiàng)可以求出數(shù)列,代入即可求出的通項(xiàng)公式,證明為常數(shù)即可.
(2)由(1)可以得到數(shù)列和的通項(xiàng)公式,且不難發(fā)現(xiàn)為等比數(shù)列,為等差數(shù)列,則為等差數(shù)列與等比數(shù)列之積,則可以利用數(shù)列求和中的錯位相減法來求的數(shù)列的前n項(xiàng)和.
試題解析:
(1)由題意知,, 2分
(常數(shù)),
∴數(shù)列是首項(xiàng)公差的等差數(shù)列. 5分
(2)由(1)知,,
, 6分
于是,
兩式相減得
2分
. 12分
考點(diǎn):錯位相減法等差數(shù)列等比數(shù)列
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
拋物線,直線過拋物線的焦點(diǎn),交軸于點(diǎn).
(1)求證:;
(2)過作拋物線的切線,切點(diǎn)為(異于原點(diǎn)),
(。是否恒成等差數(shù)列,請說明理由;
(ⅱ)重心的軌跡是什么圖形,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足(為常數(shù),)
(1)當(dāng)時,求;
(2)當(dāng)時,求的值;
(3)問:使恒成立的常數(shù)是否存在?并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知公差不為零的等差數(shù)列,等比數(shù)列,滿足,,.
(1)求數(shù)列、的通項(xiàng)公式;
(2)若,求數(shù)列{}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列中,,對任意的,、、成等比數(shù)列,公比為;、、成等差數(shù)列,公差為,且.
(1)寫出數(shù)列的前四項(xiàng);
(2)設(shè),求數(shù)列的通項(xiàng)公式;
(3)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
等差數(shù)列的各項(xiàng)均為正數(shù),,前項(xiàng)和為,為等比數(shù)列, ,且 . (1)求與;
(2)求和:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
若的圖像與直線相切,并且切點(diǎn)橫坐標(biāo)依次成公差為的等差數(shù)列.
(1)求和的值;
(2)ABC中a、b、c分別是∠A、∠B、∠C的對邊.若是函數(shù)圖象的一個對稱中心,且a=4,求ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}前n項(xiàng)和為Sn,首項(xiàng)為a1,且,an,Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿足,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等差數(shù)列的前三項(xiàng)依次為a,4,3a,前n項(xiàng)和為Sn,且Sk=110.
(1)求a及k的值;
(2)設(shè)數(shù)列{bn}的通項(xiàng)bn=,證明數(shù)列{bn}是等差數(shù)列,并求其前n項(xiàng)和Tn.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com