【題目】在直角坐標(biāo)系中,已知定點(diǎn)、,動(dòng)點(diǎn)滿足,設(shè)點(diǎn)的曲線為,直線交于兩點(diǎn).

1)寫(xiě)出曲線的方程,并指出曲線的軌跡;

2)當(dāng),求實(shí)數(shù)的取值范圍;

3)證明:存在直線,滿足,并求實(shí)數(shù)的取值范圍.

【答案】1,曲線的軌跡是以、為焦點(diǎn)的雙曲線的上支;(2;(3)詳見(jiàn)解析,,

【解析】

1)結(jié)合雙曲線的定義,可知點(diǎn)的軌跡是以、為焦點(diǎn)的雙曲線的上支,求出軌跡方程即可;

2)將直線與的方程聯(lián)立,消去,可得到關(guān)于的一元二次方程,令,求解即可;

(3)聯(lián)立直線與的方程,得到關(guān)于的一元二次方程,由,可得,設(shè),則,結(jié)合根與系數(shù)關(guān)系,可得到,若存在符合題意的直線,還需要滿足以下三個(gè)條件:①;②;③,求解即可.

1)動(dòng)點(diǎn)滿足,且,所以點(diǎn)的軌跡是以為焦點(diǎn)的雙曲線的上支,,,

所以曲線的方程為;

2)由題意,聯(lián)立,消去,得

,解得.

的取值范圍是.

3)因?yàn)?/span>,所以,設(shè),則.

聯(lián)立,可得

,

所以,整理得.

若存在符合題意的直線,還需要滿足以下三個(gè)條件:①;②;③.

,整理得,又,則,顯然恒成立;

,等價(jià)于,

因?yàn)?/span>恒成立,所以,即;

,由②知,所以.

所以滿足,即.

又因?yàn)?/span>,所以,且,故.

所以存在直線,滿足,的取值范圍為:,的取值范圍為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,是橢圓上的點(diǎn),過(guò)點(diǎn)的直線的方程為.

1)求橢圓的離心率;

2)當(dāng)時(shí),

i)設(shè)直線軸、軸分別相交于,兩點(diǎn),求的最小值;

ii)設(shè)橢圓的左、右焦點(diǎn)分別為,,點(diǎn)與點(diǎn)關(guān)于直線對(duì)稱(chēng),求證:點(diǎn),,三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某職稱(chēng)晉級(jí)評(píng)定機(jī)構(gòu)對(duì)參加某次專(zhuān)業(yè)技術(shù)考試的100人的成績(jī)進(jìn)行了統(tǒng)計(jì),繪制了頻率分布直方圖(如圖所示).規(guī)定80分及以上者晉級(jí)成功,否則晉級(jí)失敗(滿分100分).

1)求圖中的值;

2)根據(jù)已知條件完成下面列聯(lián)表,并判斷能否有的把握認(rèn)為晉級(jí)成功與性別有關(guān)?

晉級(jí)成功

晉級(jí)失敗

合計(jì)

16

50

合計(jì)

(參考公式:,其中

0.40

0.025

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

3)將頻率視為概率,從本次考試80分以上的所有人員中,按分層抽樣的方式抽取5個(gè)人的樣本;現(xiàn)從5人樣本中隨機(jī)選取2人,求選取的2人恰好都來(lái)自區(qū)間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(卷號(hào))2040818101747712

(題號(hào))2050752239689728

(題文)

在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知直線的參數(shù)方程為為參數(shù)),曲線C的極坐標(biāo)方程為.

(1)求曲線的直角坐標(biāo)方程和直線的普通方程;

(2)設(shè)直線與曲線交于兩點(diǎn),點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,已知定點(diǎn)、,動(dòng)點(diǎn)滿足,設(shè)點(diǎn)的曲線為,直線交于兩點(diǎn).

1)寫(xiě)出曲線的方程,并指出曲線的軌跡;

2)當(dāng),求實(shí)數(shù)的取值范圍;

3)證明:存在直線,滿足,并求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【選修4-4,坐標(biāo)系與參數(shù)方程】

在直角坐標(biāo)系中,直線的參數(shù)方程為t為參數(shù)),在以O為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為

)求直線的普通方程與曲線C的直角坐標(biāo)方程;

)若直線軸的交點(diǎn)為P,直線與曲線C的交點(diǎn)為A,B,的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,有三根針和套在一根針上的個(gè)金屬片,按下列規(guī)則,把金屬片從一根針上全部移到另一根針上.

(1)每次只能移動(dòng)一個(gè)金屬片;

(2)在每次移動(dòng)過(guò)程中,每根針上較大的金屬片不能放在較小的金屬片上面.

個(gè)金屬片從1號(hào)針移到3號(hào)針最少需要移動(dòng)的次數(shù)記為,則__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是圓內(nèi)接四邊形,,,.

1)求證:平面平面;

2)設(shè)線段的中點(diǎn)為,線段的中點(diǎn)為,且在線段上運(yùn)動(dòng),求直線與平面所成角的正弦值的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】【選修4-4,坐標(biāo)系與參數(shù)方程】

在直角坐標(biāo)系中,直線的參數(shù)方程為t為參數(shù)),在以O為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為

)求直線的普通方程與曲線C的直角坐標(biāo)方程;

)若直線軸的交點(diǎn)為P,直線與曲線C的交點(diǎn)為A,B,的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案