【題目】在直角坐標(biāo)系中,已知定點(diǎn)、,動(dòng)點(diǎn)滿足,設(shè)點(diǎn)的曲線為,直線交于兩點(diǎn).

1)寫(xiě)出曲線的方程,并指出曲線的軌跡;

2)當(dāng),求實(shí)數(shù)的取值范圍;

3)證明:存在直線,滿足,并求實(shí)數(shù)的取值范圍.

【答案】1,曲線的軌跡是以為焦點(diǎn)的雙曲線的上支;(2;(3)詳見(jiàn)解析,,

【解析】

1)結(jié)合雙曲線的定義,可知點(diǎn)的軌跡是以、為焦點(diǎn)的雙曲線的上支,求出軌跡方程即可;

2)將直線與的方程聯(lián)立,消去,可得到關(guān)于的一元二次方程,令,求解即可;

(3)聯(lián)立直線與的方程,得到關(guān)于的一元二次方程,由,可得,設(shè),則,結(jié)合根與系數(shù)關(guān)系,可得到,若存在符合題意的直線,還需要滿足以下三個(gè)條件:①;②;③,求解即可.

1)動(dòng)點(diǎn)滿足,且、,所以點(diǎn)的軌跡是以、為焦點(diǎn)的雙曲線的上支,,,

所以曲線的方程為;

2)由題意,聯(lián)立,消去,得,

,解得.

的取值范圍是.

3)因?yàn)?/span>,所以,設(shè),則.

聯(lián)立,可得,

,,

所以,整理得.

若存在符合題意的直線,還需要滿足以下三個(gè)條件:①;②;③.

,整理得,又,則,顯然恒成立;

,等價(jià)于,

因?yàn)?/span>恒成立,所以,即;

,由②知,所以.

所以滿足,即.

又因?yàn)?/span>,所以,且,故.

所以存在直線,滿足的取值范圍為:,的取值范圍為:.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形,四邊形是梯形,,平面平面,且.

(Ⅰ)求證:∥平面;

(Ⅱ)求二面角的大小;

(Ⅲ)已知點(diǎn)在棱上,且異面直線所成角的余弦值為,求線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè),已知函數(shù)與函數(shù)有交點(diǎn),且交點(diǎn)橫坐標(biāo)之和不大于,求的取值范圍_________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1),求函數(shù)的所有零點(diǎn);

(2),證明函數(shù)不存在極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】 如圖,在四棱錐中,底面為平行四邊形,為等邊三角形,平面平面,,,

(Ⅰ)設(shè)分別為的中點(diǎn),求證:平面;

(Ⅱ)求證:平面

(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,已知定點(diǎn)、,動(dòng)點(diǎn)滿足,設(shè)點(diǎn)的曲線為,直線交于兩點(diǎn).

1)寫(xiě)出曲線的方程,并指出曲線的軌跡;

2)當(dāng),求實(shí)數(shù)的取值范圍;

3)證明:存在直線,滿足,并求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,正三角形的邊長(zhǎng)為2, 分別在三邊上, 的中點(diǎn),

(Ⅰ)當(dāng)時(shí),求的大。

(Ⅱ)求的面積的最小值及使得取最小值時(shí)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)到點(diǎn)的距離比它到軸的距離多1,記點(diǎn)的軌跡為;

1)求軌跡的方程;

2)求定點(diǎn)到軌跡上任意一點(diǎn)的距離的最小值;

3)設(shè)斜率為的直線過(guò)定點(diǎn),求直線與軌跡恰好有一個(gè)公共點(diǎn),兩個(gè)公共點(diǎn),三個(gè)公共點(diǎn)時(shí)的相應(yīng)取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】關(guān)于統(tǒng)計(jì)數(shù)據(jù)的分析,有以下幾個(gè)結(jié)論,其中正確的個(gè)數(shù)為(

①利用殘差進(jìn)行回歸分析時(shí),若殘差點(diǎn)比較均勻地落在寬度較窄的水平帶狀區(qū)域內(nèi),則說(shuō)明線性回歸模型的擬合精度較高;

②將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都減去同一個(gè)數(shù)后,期望與方差均沒(méi)有變化;

③調(diào)查劇院中觀眾觀后感時(shí),從50排(每排人數(shù)相同)中任意抽取一排的人進(jìn)行調(diào)查是分層抽樣法;

④已知隨機(jī)變量服從正態(tài)分布,且,則.

A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案