分析 (1)利用直角坐標(biāo)與極坐標(biāo)互化方法將曲線(xiàn)C1與曲線(xiàn)C2化成極坐標(biāo)方程,利用|PN|最大值為$2\sqrt{2}$求r的值;
(2)${S_{四邊形}}={S_{△OPQ}}-{S_{△OMN}}=\frac{1}{2}OP•OQsin\frac{π}{4}-\frac{1}{2}OM•ONsin\frac{π}{4}$,利用三角函數(shù)知識(shí)求四邊形MNPQ面積的最大值.
解答 解:(1)曲線(xiàn)${C_1}:{(x-2)^2}+{(y-2)^2}=8$,極坐標(biāo)方程${C_1}:ρ=4\sqrt{2}sin(θ+\frac{π}{4})$,
曲線(xiàn)${C_2}:{x^2}+{y^2}={r^2}(0<r<4)$,極坐標(biāo)方程C2:ρ=r
$|PN|=|{ρ_P}-{ρ_N}|=|4\sqrt{2}sin(α+\frac{π}{4})-r{|_{max}}$=$2\sqrt{2}$,
∴$r=2\sqrt{2}$,∴${C_2}:ρ=2\sqrt{2}$…(4分)
(2)${S_{四邊形}}={S_{△OPQ}}-{S_{△OMN}}=\frac{1}{2}OP•OQsin\frac{π}{4}-\frac{1}{2}OM•ONsin\frac{π}{4}$
=$\frac{1}{2}×4\sqrt{2}sin(α+\frac{π}{4})×4\sqrt{2}sin(α+\frac{π}{2})×\frac{\sqrt{2}}{2}$-$\frac{1}{2}×2\sqrt{2}×2\sqrt{2}×\frac{\sqrt{2}}{2}$
=4$\sqrt{2}$sin(2$α+\frac{π}{4}$)+4-2$\sqrt{2}$
當(dāng)$α=\frac{π}{8}$時(shí),面積的最大值為$4+2\sqrt{2}$…(6分)
點(diǎn)評(píng) 本題考查直角坐標(biāo)與極坐標(biāo)互化,考查三角函數(shù)知識(shí),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | m≤0 | B. | m≤-1 | C. | m≥2 | D. | m≤-$\frac{3}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 直角三角形 | B. | 等邊三角形 | C. | 等腰三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com