精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=alnx-ax-3(a∈R).
(Ⅰ)求函數f(x)的單調區(qū)間;
(Ⅱ)若函數y=f(x)的圖象在點(2,f(2))處的切線的傾斜角為45°,對于任意的t∈[1,2],函數在區(qū)間(t,3)上總不是單調函數,求m的取值范圍;
(Ⅲ)求證:
【答案】分析:利用導數求函數的單調區(qū)間的步驟是①求導函數f′(x);②解f′(x)>0(或<0);③得到函數的增區(qū)間(或減區(qū)間),
對于本題的(1)在求單調區(qū)間時要注意函數的定義域以及對參數a的討論情況;
(2)點(2,f(2))處的切線的傾斜角為45°,即切線斜率為1,即f'(2)=1,可求a值,代入得g(x)的解析式,由t∈[1,2],且g(x)在區(qū)間(t,3)上總不是單調函數可知:,于是可求m的范圍.
(3)是近年來高考考查的熱點問題,即與函數結合證明不等式問題,常用的解題思路是利用前面的結論構造函數,利用函數的單調性,對于函數取單調區(qū)間上的正整數自變量n有某些結論成立,進而解答出這類不等式問題的解.
解答:解:(Ⅰ)(2分)
當a>0時,f(x)的單調增區(qū)間為(0,1],減區(qū)間為[1,+∞);
當a<0時,f(x)的單調增區(qū)間為[1,+∞),減區(qū)間為(0,1];
當a=0時,f(x)不是單調函數(4分)
(Ⅱ)得a=-2,f(x)=-2lnx+2x-3
,
∴g'(x)=3x2+(m+4)x-2(6分)
∵g(x)在區(qū)間(t,3)上總不是單調函數,且g′(0)=-2

由題意知:對于任意的t∈[1,2],g′(t)<0恒成立,
所以有:,∴(10分)
(Ⅲ)令a=-1此時f(x)=-lnx+x-3,所以f(1)=-2,
由(Ⅰ)知f(x)=-lnx+x-3在(1,+∞)上單調遞增,
∴當x∈(1,+∞)時f(x)>f(1),即-lnx+x-1>0,
∴l(xiāng)nx<x-1對一切x∈(1,+∞)成立,(12分)
∵n≥2,n∈N*,則有0<lnn<n-1,


點評:本題考查利用函數的導數來求函數的單調區(qū)間,已知函數曲線上一點求曲線的切線方程即對函數導數的幾何意義的考查,考查求導公式的掌握情況.含參數的數學問題的處理,構造函數求解證明不等式問題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•海淀區(qū)二模)已知函數f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a|x|的圖象經過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a•2x+b•3x,其中常數a,b滿足a•b≠0
(1)若a•b>0,判斷函數f(x)的單調性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=a-2|x|+1(a≠0),定義函數F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數F(x)是奇函數;③當a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習冊答案