6.已知函數(shù)$f(x)=\frac{2}{x}-kx+5lnx-2n(n∈{N^*},k∈R)$的一個(gè)極值點(diǎn)2,
(1)求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線l的方程;
(2)若數(shù)列{an}滿足a3=15,且對(duì)任意的n∈N*且n≥2,點(diǎn)(an,an-1)均在切線l上,證明:$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{a_n}<\frac{3}{4}$.

分析 (1)f′(x)=$\frac{-k{x}^{2}+5x-2}{x}$,由f′(2)=0,解得k=2,
求得f(1)=-2n,f′(1)=1,
即可得到函數(shù)f(x)在點(diǎn)(1,f(1))處的切線l的方程.
(2)可得an-an-1=2n+1.即a4-a3=9,a5-a4=11,a6-a5=13…an-an-1=2n+1
累加可得${a}_{n}={n}^{2}+2n$.$\frac{1}{{a}_{n}}$=$\frac{1}{2}$($\frac{1}{n}$$-\frac{1}{n+2}$)
即$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}-\frac{1}{4}$+$\frac{1}{3}-\frac{1}{5}$+..+$-\frac{1}{n+2}$)=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$$-\frac{1}{n+2}$)=$\frac{3}{4}-\frac{1}{2}(\frac{1}{n+1}+\frac{1}{n+2})$$<\frac{3}{4}$

解答 解:(1)f′(x)=$\frac{-k{x}^{2}+5x-2}{x}$
∵函數(shù)$f(x)=\frac{2}{x}-kx+5lnx-2n(n∈{N^*},k∈R)$的一個(gè)極值點(diǎn)2,
∴f′(2)=0,解得k=2
∴f(x)=$\frac{2}{x}-2x+5lnx-2n$,f$′(x)=\frac{-2{x}^{2}+5x-2}{x}$
∴f(1)=-2n,f′(1)=1
∴函數(shù)f(x)在點(diǎn)(1,f(1))處的切線l的方程為:y+2n=1×(x-1),
即x-y-1-2n=0為所求.
(2)證明:∵對(duì)任意的n∈N*且n≥2,點(diǎn)(an,an-1)均在切線l上,∴an-an-1=2n+1.
可得a4-a3=9,a5-a4=11,a6-a5=13…an-an-1=2n+1
累加可得an-a3=9+11+13+…+(2n+1)=$\frac{(2n+1+9)(n-3)}{2}$
∴${a}_{n}={n}^{2}+2n$.則$\frac{1}{{a}_{n}}$=$\frac{1}{2}$($\frac{1}{n}$$-\frac{1}{n+2}$)
∴$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{n}}$=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{2}-\frac{1}{4}$+$\frac{1}{3}-\frac{1}{5}$+..+$-\frac{1}{n+2}$)=$\frac{1}{2}$(1+$\frac{1}{2}$-$\frac{1}{n+1}$$-\frac{1}{n+2}$)
=$\frac{3}{4}-\frac{1}{2}(\frac{1}{n+1}+\frac{1}{n+2})$$<\frac{3}{4}$.

點(diǎn)評(píng) 本題考查了導(dǎo)數(shù)的應(yīng)用,考查了數(shù)列遞推式及列項(xiàng)求和,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已f(x)=ax3+bx2+cx+d的圖象如圖所示,則有(  )
A.b<0B.0<b<1C.1<b<2D.b>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.?dāng)?shù)列{an}的通項(xiàng) an=n2(cos2$\frac{nπ}{3}$-sin2$\frac{nπ}{3}$),其前n項(xiàng)和為Sn
(1)求S1,S2,S3;
(2)求Sn;
(3)若數(shù)列bn=-$\frac{9n-4}{n+2}$•$\frac{1}{{S}_{3n-1}}$,其前n項(xiàng)和為Tn,求證:$\frac{2}{3}$≤Tn<$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.直線l1、l2分別過(guò)點(diǎn)P(-2,3)、Q(3,-2),它們分別繞點(diǎn)P、Q旋轉(zhuǎn)但保持平行,那么它們之間的距離d的取值范圍是( 。
A.(0,+∞)B.(0,$5\sqrt{2}$]C.($5\sqrt{2}$,+∞)D.[$5\sqrt{2}$,+∞]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.定義為R上的函數(shù)f(x)滿足(x+2)f'(x)<0,又$a=f({log_2}\frac{1}{3})$,$b=f({(\frac{1}{3})^{0.3}})$,c=f(ln3),則( 。
A.a<b<cB.b<c<aC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若函數(shù)f(x)=(k2-3k+2)x+b在R上是減函數(shù),則k的取值范圍為( 。
A.(1,3)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2+cosα}\\{y=1+sinα}\end{array}\right.$,(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為$\frac{\sqrt{2}}{2}$ρ(sinθ+cosθ)=$\sqrt{2}$,
(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程;
(2)判斷曲線C1與曲線C2的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=\sqrt{2}cosα\\ y=2sinα\end{array}$(α∈R,α為參數(shù)),曲線C2的極坐標(biāo)方程為$\sqrt{2}$ρcosθ-ρsinθ-3$\sqrt{2}$=0.
(Ⅰ)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(Ⅱ)設(shè)P為曲線C1上一點(diǎn),Q為曲線C2上一點(diǎn),求|PQ|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+tcosα}\\{y=2+tsinα}\end{array}\right.$(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位),且以原點(diǎn)O為極點(diǎn),以x軸非負(fù)半軸為極軸)中,圓C的方程為ρ=6sinθ.
(1)求圓C的直角坐標(biāo)方程;
(2)若點(diǎn)P(1,2),設(shè)圓C與直線l交于點(diǎn)A,B,求|PA|+|PB|的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案