11.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=PD=2,O為AC與BD的交點(diǎn),E為棱PB上一點(diǎn).
(1)證明:平面EAC⊥平面PBD;
(2)若E是PB中點(diǎn),求點(diǎn)B平面EDC的距離.

分析 (1)由PD⊥平面ABCD得PD⊥AC,由菱形性質(zhì)得AC⊥BD,故而AC⊥平面PBD,于是平面EAC⊥平面PBD;
(2)連結(jié)OE,則可證OE⊥平面ABCD,以O(shè)為原點(diǎn)建立空間坐標(biāo)系,求出BC與平面CDE所成的角θ,則點(diǎn)B到平面EDC的距離為|BC|sinθ.

解答 證明:(1)∵PD⊥平面ABCD,AC?平面ABCD,
∴PD⊥AC,
∵底面ABCD是菱形,∴AC⊥BD
又PD?平面PBD,BD?平面PBD,PD∩BD=D,
∴AC⊥平面PBD.
∵AC?平面EAC,
∴平面EAC⊥平面PBD.
(2)連結(jié)OE,
∵O,E分別是BD,PB的中點(diǎn),∴OE∥PD,OE=$\frac{1}{2}$PD=1.
∵PD⊥平面ABCD,∴OE⊥平面ABCD.
∵底面ABCD是菱形,∴AC⊥BD.
以O(shè)為原點(diǎn),以O(shè)A,OB,OE為坐標(biāo)軸建立空間直角坐標(biāo)系,如圖所示:
∵底面ABCD是菱形,∠BAD=60°,AB=2,
∴△ABD,△BCD是等邊三角形,
∴OB=OD=1,OA=OC=$\sqrt{3}$.
∴B(0,1,0),C(-$\sqrt{3}$,0,0),D(0,-1,0),E(0,0,1).
∴$\overrightarrow{BC}$=(-$\sqrt{3}$,-1,0),$\overrightarrow{DC}$=(-$\sqrt{3}$,1,0),$\overrightarrow{DE}$=(0,1,1).
設(shè)平面CDE的法向量為$\overrightarrow{n}$=(x,y,z),則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{DC}=0}\\{\overrightarrow{n}•\overrightarrow{DE}=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{-\sqrt{3}x+y=0}\\{y+z=0}\end{array}\right.$,令x=1得$\overrightarrow{n}$=(1,$\sqrt{3}$,-$\sqrt{3}$).
∴cos<$\overrightarrow{BC},\overrightarrow{n}$>=$\frac{\overrightarrow{BC}•\overrightarrow{n}}{|\overrightarrow{BC}||\overrightarrow{n}|}$=$\frac{-2\sqrt{3}}{2•\sqrt{7}}$=-$\frac{\sqrt{21}}{7}$.
設(shè)BC與平面CDE所成的角為θ,則sinθ=|cos<$\overrightarrow{BC},\overrightarrow{n}$>|=$\frac{\sqrt{21}}{7}$.
∴點(diǎn)B到平面EDC的距離為|BC|•sinθ=$\frac{2\sqrt{21}}{7}$.

點(diǎn)評(píng) 本題考查了面面垂直的判定,空間向量的應(yīng)用與空間距離的計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=x2-2x-c,x∈[-1,2],任取c∈[-5,5],則使f(x)<0恒成立的概率是( 。
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在△ABC中,A,B,C為三角形的三個(gè)內(nèi)角,則
(1)A+B+C=π;
(2)A+B=π-C;
(3)sin(A+B)=sinC;
(4)sin$\frac{A+B}{2}$=cos$\frac{C}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知cos2α+cos2β+cos2γ=1,則sinαsinβsinγ的最大值為( 。
A.$\frac{2\sqrt{3}}{9}$B.$\frac{2\sqrt{2}}{9}$C.$\frac{2\sqrt{6}}{9}$D.$\frac{2\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)集合A={y|y=x2+1},B={x|y=$\frac{1}{{\sqrt{{2^x}-2}}}}\right.}\right.$},則A∩B=( 。
A.[1,+∞)B.(0,+∞)C.(1,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.區(qū)間[0,2]上隨機(jī)取一個(gè)數(shù)x,sin$\frac{πx}{2}$的值介于$\frac{1}{2}$到1之間的概率為( 。
A.$\frac{1}{3}$B.$\frac{2}{π}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知f(x)是定義在R上的奇函數(shù),且對(duì)任意的x∈R都有f(x+3)-f(-x)=0,當(dāng)x∈(0,1]時(shí)f(x)=x2-4x,則f(2015)+f(2016)=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知集合A={1,2},B={1,2,…,4n}(n∈N*),設(shè)C={(x,y)|x整除y或y整除x,x∈A,y∈B},令f(n)表示集合C所含元素的個(gè)數(shù).
(1)求f(1),f(2),f(3)的值;
(2)由(1)猜想f(n)的表達(dá)式,并用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線$\frac{{x}^{2}}{3}$-y2=1的漸近線上的一點(diǎn)A到其右焦點(diǎn)F的距離等于2,拋物線y2=2px(p>0)過點(diǎn)A,則該拋物線的方程為(  )
A.y2=2xB.y2=xC.y2=$\frac{1}{2}$xD.y2=$\frac{1}{4}$x

查看答案和解析>>

同步練習(xí)冊(cè)答案