【題目】已知函數,().
(Ⅰ)若函數有且只有一個零點,求實數的取值范圍;
(Ⅱ)設,若,若函數對恒成立,求實數的取值范圍.(是自然對數的底數,)
【答案】(Ⅰ)(Ⅱ)
【解析】
(Ⅰ)首先確定函數定義域為,求出導數;當時,可知函數單調遞增,根據可知滿足題意;當時,可求得導函數的零點;當零點可知滿足題意;當或結合函數的單調性和零點存在性定理可判斷出存在不止一個零點,不滿足題意;綜合上述情況得到結果;(Ⅱ)當時,可知,得到,滿足題意;當時,根據符號可知單調遞增,由零點存在性定理可驗證出,使得,從而得到在上單調遞減,則,不滿足題意,從而得到結果.
(Ⅰ)由題意得:定義域為,則
①當時,恒成立 在上單調遞增
又 有唯一零點,即滿足題意
②當時
當時,;當時,
即在上單調遞減,在上單調遞增
⑴當,即時,,有唯一零點,滿足題意
⑵當,即時,
又,且
,使得,不符合題意
⑶當,即時,
設,,則
在上單調遞增 ,即
又 ,使得,不符合題意
綜上所述:的取值范圍為:
(Ⅱ)由題意得:,則,
①當時,由得:恒成立
在上單調遞增
即滿足題意
②當時,恒成立 在上單調遞增
又,
,使得
當時,,即在上單調遞減
,則不符合題意
綜上所述:的取值范圍為:
科目:高中數學 來源: 題型:
【題目】設直線l的方程為(a﹣1)x+y+a+3=0,(a∈R).
(1)若直線l在兩坐標軸上截距的絕對值相等,求直線l的方程;
(2)若直線l不經過第一象限,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“讀書可以讓人保持思想活躍,讓人得到智慧啟發(fā),讓人滋養(yǎng)浩然之氣”,2018年第一期中國青年閱讀指數數據顯示,從供給的角度,文學閱讀域是最多的,遠遠超過了其他閱讀域的供給量.某校采用分層抽樣的方法從1000名文科生和2000名理科生中抽取300名學生進行了在暑假閱讀內容和閱讀時間方面的調查,得到數據如表:
文學閱讀人數 | 非文學閱讀人數 | 調查人數 | |
理科生 | 130 | ||
文科生 | 45 | ||
合計 |
(1)先完成上面的表格,并判斷能否有90%的把握認為學生所學文理與閱讀內容有關?
(2從300名被調查的學生中,隨機進取30名學生,整理其日平均閱讀時間(單位:分鐘)如表:
閱讀時間 | |||||
男生人數 | 2 | 4 | 3 | 5 | 2 |
女生人數 | 1 | 3 | 4 | 3 | 3 |
試估計這30名學生日閱讀時間的平均值(同一組中的數據以這組數據所在區(qū)間中點的值作代表)
(3)從(2)中日均閱讀時間不低于120分鐘的學生中隨機選取2人介紹閱讀心得,求這兩人都是女生的概率.
參考公式: ,其中.
參考數據:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,PA⊥平面ABC,AB⊥BC,PA=AB,D為PB中點,PC=3PE.
(1)求證:平面ADE⊥平面PBC;
(2)在AC上是否存在一點M,使得MB∥平面ADE?若存在,請確定點M的位置,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知兩點A(0,﹣1),B(0,1),直線PA,PB相交于點P,且它們的斜率之積是,記點P軌跡為C.
(1)求曲線C的軌跡方程;
(2)直線l與曲線C交于M,N兩點,若|AM|=|AN|,求直線l的斜率k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,離心率為,直線與的兩個交點間的距離為.
(Ⅰ)求橢圓的方程;
(Ⅱ)分別過作滿足,設與的上半部分分別交于兩點,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某大學餐飲中心為了了解新生的飲食習慣,在全校一年級學生中進行了抽樣調查,調查結果如下表所示:
喜歡甜品 | 不喜歡甜品 | 合計 | |
南方學生 | 60 | 20 | 80 |
北方學生 | 10 | 10 | 20 |
合計 | 70 | 30 | 100 |
根據表中數據,問是否有的把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差異”;
已知在被調查的北方學生中有5名數學系的學生,其中2名喜歡甜品,現(xiàn)在從這5名學生中隨機抽取3人,求至多有1人喜歡甜品的概率.
附:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數方程為(其中為參數)曲線的普通方程為,以坐標原點為極點,以軸正半軸為極軸建立極坐標系.
(1)求曲線和曲線的極坐標方程;
(2)射線:依次與曲線和曲線交于、兩點,射線:依次與曲線和曲線交于、兩點,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com