【題目】如圖,在三棱錐P﹣ABC中,PA⊥平面ABC,AB⊥BC,PA=AB,D為PB中點(diǎn),PC=3PE.
(1)求證:平面ADE⊥平面PBC;
(2)在AC上是否存在一點(diǎn)M,使得MB∥平面ADE?若存在,請(qǐng)確定點(diǎn)M的位置,并說(shuō)明理由.
【答案】(1)證明見(jiàn)解析(2)存在,是中點(diǎn);證明見(jiàn)解析
【解析】
(1)根據(jù)已知可得,,可證BC⊥平面PAB,進(jìn)而BC⊥AD,根據(jù)已知可得AD⊥PB,AD⊥平面PBC,即可證明結(jié)論;
(2)存在M是AC中點(diǎn)時(shí),MB∥平面ADE,取EC中點(diǎn)F,連結(jié)BM,MF,可證
平面,平面,進(jìn)而證明平面平面,即可證明結(jié)論.
(1)證明:∵PA⊥平面ABC,平面ABC,∴BC⊥PA,
平面PAB,
∴BC⊥平面PAB,平面PAB,∴BC⊥AD,
∵PA=AB,D為PB中點(diǎn),∴AD⊥PB,
平面,∴AD⊥平面PBC,
∵AD平面ADE,∴平面ADE⊥平面PBC.
(2)點(diǎn)M是AC中點(diǎn)時(shí),MB∥平面ADE,證明如下:
取EC中點(diǎn)F,連結(jié)BM,MF,
因?yàn)?/span>分別為的兩個(gè)三等分點(diǎn),
在中,平面,
平面平面,
同理平面,又平面,
平面平面,平面,
平面.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=xlnx+1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)的在區(qū)間[t,t+1](t>0)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓方程(),,是橢圓的左右焦點(diǎn),以,及橢圓短軸的一個(gè)端點(diǎn)為頂點(diǎn)的三角形是面積為的正三角形.
(1)求橢圓方程;
(2)過(guò)分別作直線,,且,設(shè)與橢圓交于,兩點(diǎn),與橢圓交于,兩點(diǎn),求四邊形面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的右焦點(diǎn)到直線的距離為,在橢圓上.
(1)求橢圓的方程;
(2)若過(guò)作兩條互相垂直的直線,是與橢圓的兩個(gè)交點(diǎn),是與橢圓的兩個(gè)交點(diǎn),分別是線段的中點(diǎn)試,判斷直線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn)求出該定點(diǎn)的坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校為了對(duì)教師教學(xué)水平和教師管理水平進(jìn)行評(píng)價(jià),從該校學(xué)生中選出300人進(jìn)行統(tǒng)計(jì).其中對(duì)教師教學(xué)水平給出好評(píng)的學(xué)生人數(shù)為總數(shù)的,對(duì)教師管理水平給出好評(píng)的學(xué)生人數(shù)為總數(shù)的,其中對(duì)教師教學(xué)水平和教師管理水平都給出好評(píng)的有120人.
(1)填寫(xiě)教師教學(xué)水平和教師管理水平評(píng)價(jià)的列聯(lián)表:
對(duì)教師管理水平好評(píng) | 對(duì)教師管理水平不滿意 | 合計(jì) | |
對(duì)教師教學(xué)水平好評(píng) | |||
對(duì)教師教學(xué)水平不滿意 | |||
合計(jì) |
請(qǐng)問(wèn)是否可以在犯錯(cuò)誤概率不超過(guò)0.001的前提下,認(rèn)為教師教學(xué)水平好評(píng)與教師管理水平好評(píng)有關(guān)?
(2)若將頻率視為概率,有4人參與了此次評(píng)價(jià),設(shè)對(duì)教師教學(xué)水平和教師管理水平全好評(píng)的人數(shù)為隨機(jī)變量.
①求對(duì)教師教學(xué)水平和教師管理水平全好評(píng)的人數(shù)的分布列(概率用組合數(shù)算式表示);
②求的數(shù)學(xué)期望和方差.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(,其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),().
(Ⅰ)若函數(shù)有且只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅱ)設(shè),若,若函數(shù)對(duì)恒成立,求實(shí)數(shù)的取值范圍.(是自然對(duì)數(shù)的底數(shù),)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】兩地相距千米,汽車(chē)從地勻速行駛到地,速度不超過(guò)千米小時(shí),已知汽車(chē)每小時(shí)的運(yùn)輸成本(單位:元)由可變部分和固定部分兩部分組成:可變部分與速度的平方成正比,比例系數(shù)為,固定部分為元,
(1)把全程運(yùn)輸成本(元)表示為速度(千米小時(shí))的函效:并求出當(dāng)時(shí),汽車(chē)應(yīng)以多大速度行駛,才能使得全程運(yùn)輸成本最小;
(2)隨著汽車(chē)的折舊,運(yùn)輸成本會(huì)發(fā)生一些變化,那么當(dāng),此時(shí)汽車(chē)的速度應(yīng)調(diào)整為多大,才會(huì)使得運(yùn)輸成本最小,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】棋盤(pán)上標(biāo)有第、、、、站,棋子開(kāi)始位于第站,棋手拋擲均勻硬幣走跳棋游戲,若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到調(diào)到第站或第站時(shí),游戲結(jié)束.設(shè)棋子位于第站的概率為.
(1)當(dāng)游戲開(kāi)始時(shí),若拋擲均勻硬幣次后,求棋手所走步數(shù)之和的分布列與數(shù)學(xué)期望;
(2)證明:;
(3)求、的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com