15.已知復(fù)數(shù)z的共扼復(fù)數(shù)為$\frac{2+3i}{1+i}$,則復(fù)數(shù)z2+$\overline{z}$+1的虛部為(  )
A.1B.2C.-2iD.-2

分析 化簡(jiǎn)已知復(fù)數(shù),由共軛復(fù)數(shù)代入化簡(jiǎn)可得.

解答 解:化簡(jiǎn)可得$\frac{2+3i}{1+i}$=$\frac{(2+3i)(1-i)}{(1+i)(1-i)}$=$\frac{5+i}{2}$,
∴由共扼復(fù)數(shù)可得z=$\frac{5-i}{2}$,
∴z2+$\overline{z}$+1=($\frac{5-i}{2}$)2+$\frac{5+i}{2}$+1=6-$\frac{5}{2}$i+$\frac{5+i}{2}$+1=$\frac{19}{2}$-2i,
故虛部為:-2,
故選:D.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的代數(shù)形式的混合運(yùn)算,涉及共軛復(fù)數(shù),屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.在△ABC中,a=3,$b=\sqrt{5}$,A=60°,則cosB=( 。
A.$±\frac{{\sqrt{15}}}{6}$B.$\frac{{\sqrt{15}}}{6}$C.$±\frac{{\sqrt{21}}}{6}$D.$\frac{{\sqrt{21}}}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如果a<b<0,那么下列各式一定成立的是( 。
A.a-b>0B.ac<bcC.a2>b2D.$\frac{1}{a}$<$\frac{1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.直線$\sqrt{3}$x+y-3=0的傾斜角為(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在平面直角坐標(biāo)系xoy中,以O(shè)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,點(diǎn)M的極坐標(biāo)為(4,$\frac{3π}{2}$),若點(diǎn)M落在曲線C1:ρcos(θ+$\frac{π}{6}$)=a上,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}{x=-2+cosθ}\\{y=sinθ}\end{array}\right.$,(θ為參數(shù)),點(diǎn)N為曲線C2上動(dòng)點(diǎn).
(I)求曲線C1的直角坐標(biāo)方程;
(Ⅱ)記點(diǎn)N到曲線C1的距離為d,求d的最小值并判斷點(diǎn)M與曲線C2的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知m,n∈R且a>1,直線l:(m+3n)x+2(m-n)y-8m=0與函數(shù)y=loga(x+b)的圖象恒有公共點(diǎn),則a3-b2的最大值是$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=tanx,x∈[-$\frac{π}{4}$,$\frac{π}{6}$]的值域?yàn)閇-1,$\frac{\sqrt{3}}{3}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知角α的終邊經(jīng)過點(diǎn)(-4,3),則sin(π+α)=-$\frac{3}{5}$,cos(π-α)=$\frac{4}{5}$,tan(-α)=$\frac{3}{4}$,sin($\frac{π}{2}$-α)=-$\frac{4}{5}$,cos($\frac{π}{2}$+α)=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知cosA+cosB=0,sinA+sinB=1,則cos(A+B)的值為(  )
A.1B.$\frac{1}{2}$C.-1D.-$\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案