【題目】網上購物是用戶使用手機或電腦對所消費的商品或服務進行網絡賬務支付的一種服務方式,外賣、購物、買票等等我們生活的各個方面都可以通過網上來實現,某網絡公司通過隨機問卷調查,得到不同年齡段的網民在網上購物的情況.并從參與調查者中隨機抽取了人.經統計得到如下表格:
年齡(歲) | ||||||
頻數 | ||||||
在網上購物的人數 |
若把年齡大于或等于而小于歲的視為青少年,把年齡大于或等于而小于歲的視為中年.把年齡大于或等于歲的視為老年,將頻率視為概率.求:
(1)在青少年,中年,老年中,哪個群休網上購物的概率最大?
(2)現從某市青少年網民(人數眾多)中隨機抽取人,設其中網上購物的人數為.求隨機變量的分布列及期望.
科目:高中數學 來源: 題型:
【題目】已知點是拋物線:的焦點,點為拋物線的對稱軸與其準線的交點,過作拋物線的切線,切點為,若點恰好在以,為焦點的雙曲線上,則雙曲線的離心率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】每逢節(jié)日,電商之間的價格廝殺已經不是什么新鮮事,今年的6月18日也不例外.某電商在6月18日之后,隨機抽取100名顧客進行回訪,按顧客的年齡分成6組,得到如下頻數分布表:
顧客年齡 | ||||||
頻數 | 4 | 24 | 32 | 20 | 16 | 4 |
(1)在下表中作出這些數據的頻率分布直方圖;
(2)用分層抽樣的方法從這100名顧客中抽取25人,再從抽取的25人中隨機抽取2人,求年齡在內的顧客人數的分布列、數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率,且橢圓過點
(1)求橢圓的標準方程;
(2)設直線與交于、兩點,點在橢圓上,是坐標原點,若,判定四邊形的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線的參數方程為(, 為參數),曲線的極坐標方程為.
(1)將曲線的極坐標方程化為直角坐標方程,并說明曲線的形狀;
(2)若直線經過點,求直線被曲線截得的線段的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】唐代詩人李頎的詩《古從軍行》開頭兩句說:“白日登山望烽火,黃昏飲馬傍交河.”詩中隱含著一個有趣的數學問題——“將軍飲馬”,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬再回到軍營,怎樣走才能使總路程最短?在如圖所示的直角坐標系xOy中,設軍營所在平面區(qū)域為{(x,y)|x2+y2≤},河岸線所在直線方程為x+2y-4=0.假定將軍從點P(,)處出發(fā),只要到達軍營所在區(qū)域即回到軍營,當將軍選擇最短路程時,飲馬點A的縱坐標為______.最短總路程為______
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】新冠肺炎疫情期間,為了減少外出聚集,“線上買菜”受追捧.某電商平臺在地區(qū)隨機抽取了位居民進行調研,獲得了他們每個人近七天“線上買菜”消費總金額(單位:元),整理得到如圖所示頻率分布直方圖.
(1)求的值;
(2)從“線上買菜”消費總金額不低于元的被調研居民中,隨機抽取位給予獎品,求這位“線上買菜”消費總金額均低于元的概率;
(3)若地區(qū)有萬居民,該平臺為了促進消費,擬對消費總金額不到平均水平一半的居民投放每人元的電子補貼.假設每組中的數據用該組區(qū)間的中點值代替,試根據上述頻率分布直方圖,估計該平臺在地區(qū)擬投放的電子補貼總金額.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com