有紅,黃,藍,白四中顏色的卡片各4張,每種顏色的卡片上分別標有1,2,3,4,現(xiàn)在從這些卡片中任取4張,則顏色及數(shù)字均不同的取法有( 。┓N.
A、256B、25C、24D、23
考點:計數(shù)原理的應(yīng)用
專題:排列組合
分析:直接利用排列知識,即可求解
解答: 解:∵從中任取4張,要求四種顏色齊全且數(shù)字均不相同,
∴取法總數(shù)為4×3×2×1=24.
故選:C
點評:本題考查排列、組合及簡單計數(shù)問題,考查學生的計算能力,比較基礎(chǔ).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知點P(a+1,b+1),Q(1,0)不重合,線段PQ與直線2x-3y+1=0有交點,給出下列命題:
①2a-3b≤0;
②當a≠0時,
b
a
既有最小值又有最大值;
③?M>0,-
1
9
-b-a2≤M恒成立;
④當a≥0時,4a<9b;
⑤若b<0,則|
PQ
|取最小值時a=-
6
13

其中正確的命題是
 
(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)實數(shù)x,y 滿足不等式組
2x-y≤2
y-x≤1
x+y≥2
,若|ax-y|的最小值為0,則實數(shù)a的最小值與最大值的和等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

m
=(sinωx,cosωx)
n
=(
3
cosωx,-cosωx)(ω>0)
,記f(x)=
m
n
,已知y=f(x)圖象的兩條相鄰對稱軸之間的距離為
π
4

(Ⅰ)求ω的值;
(Ⅱ)若△ABC的內(nèi)角A,B,C所對的邊a,b,c滿足b2=ac,求f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=x+4(1-x) 
1
2
的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在一塊耕地上種植一種作物,每季種植成本為800元,此作物的市場價格和這塊地上的產(chǎn)量均具有隨機性,且互不影響,其具體情況如下表:
作物產(chǎn)量(kg)300500
概率0.50.5
作物市場價格(元/kg)610
概率0.20.8
(Ⅰ)設(shè)X表示在這塊地上種植1季此作物的利潤,求X的分布列;
(Ⅱ)若在這塊地上連續(xù)3季種植此作物,求這3季中至少有2季的利潤不少于2000元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a>0,x,y滿足約束條件
x≥1
x+y≤3
y≥a(x-3)
,若z=2x+y的最小值為1,則a=( 。
A、
1
2
B、
1
3
C、1
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知M(-5,0),N(5,0)是平面上的兩點,若曲線C上至少存在一點P,使|PM|=|PN|+6,則稱曲線C為“黃金曲線”.下列五條曲線:
y2
16
-
x2
9
=1;
x2
4
+
y2
9
=1;          
x2
4
-
y2
9
=1;
④y2=4x;
⑤x2+y2=9.
其中為“黃金曲線”的是
 
.(寫出所有“黃金曲線”的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
1
a
2
,
a
3
,…
a
n
滿足如下條件:
a
n
-
a
n-1
=
d
(n=2,3,4,…),
d
a1
的夾角為
3
,且|
a
1
|=4|
d
|=2
,則數(shù)列|
a
1
|,|
a
2
|,|
a
3
|,…|
a
n
|…
中最小的項是
 

查看答案和解析>>

同步練習冊答案